issues
2 rows where user = 4605410 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
512205079 | MDU6SXNzdWU1MTIyMDUwNzk= | 3445 | Merge fails when sparse Dataset has overlapping dimension values | k-a-mendoza 4605410 | open | 0 | 3 | 2019-10-24T22:08:12Z | 2021-07-08T17:43:57Z | NONE | Sparse numpy arrays used in a merge operation seem to fail under certain coordinate settings. for example, this works perfectly: ```python import xarray as xr import numpy as np data_array1 = xr.DataArray(data,name='default', dims=['source','receiver','time'], coords={'source':['X.1'], 'receiver':['X.2'], 'time':time}).to_dataset() data_array2 = xr.DataArray(data,name='default', dims=['source','receiver','time'], coords={'source':['X.2'], 'receiver':['X.1'], 'time':time}).to_dataset() dataset1 = xr.merge([data_array1,data_array2]) ``` But this raises an ```python import xarray as xr import numpy as np import sparse data = sparse.COO.from_numpy(np.random.uniform(-1,1,(1,1,100))) time = np.linspace(0,1,num=100) data_array1 = xr.DataArray(data,name='default', dims=['source','receiver','time'], coords={'source':['X.1'], 'receiver':['X.2'], 'time':time}).to_dataset() data_array2 = xr.DataArray(data,name='default', dims=['source','receiver','time'], coords={'source':['X.2'], 'receiver':['X.1'], 'time':time}).to_dataset() dataset1 = xr.merge([data_array1,data_array2]) ``` I have noticed this occurs when the merger would seem to add dimensions filled with nan values. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3445/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
458236359 | MDU6SXNzdWU0NTgyMzYzNTk= | 3035 | Feature Request: Additional parallel IO format support: ASDF, ph5, or similar | k-a-mendoza 4605410 | open | 0 | 1 | 2019-06-19T21:32:04Z | 2020-04-07T06:42:15Z | NONE | Problem descriptionCurrently, Xarray supports reading/writing a variety of dataformats. Geoscience data in particular is a stated use-case domain. However, in the documentation, it seems as though geoscience mostly refers to hydrologic and atmospheric data. It would be very useful to more domains of geoscience if xarray also supported read/writes to formats encountered regularly in geophysics, either something like ph5, ASDF, or the like. Already projects like obsplus deliver some xarray->seismic formats -> xarray functionality, but have yet to venture into the parallel read/write operations that make xarray so attractive. I am not sure what the overhead would be in adapting xarray to use these existing packages, or in creating common interfaces for use with these packages. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3035/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);