issues
3 rows where user = 397386 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
448082431 | MDU6SXNzdWU0NDgwODI0MzE= | 2986 | How to add a custom indexer. | fbriol 397386 | closed | 0 | 4 | 2019-05-24T09:56:25Z | 2023-08-23T12:24:21Z | 2023-08-23T12:24:20Z | CONTRIBUTOR | Hello, I have written a set of indexers for 1D, 2D and 3D geodetic and Cartesian data (up to 5 dimensions for Cartesian data). I used the Boost/C++ library to write the multidimensional data search algorithm. This tree (R*Tree) is impressive for its performance. It can be built in a few seconds with several million points and made requests for a few seconds with several million points. ```python import numpy as np Install it with conda, if you want, only for python3.7: conda install pyindex -c fbriolimport pyindex.core as core lon = np.random.uniform(-180.0, 180.0, 20484096) lat = np.random.uniform(-90.0, 90.0, 20484096) You can not set an altitude if it is not necessary.alt = np.random.uniform(-10000, 100000, 2048*4096) WGS system usedsystem = core.geodetic.System() RTreetree = core.geodetic.RTree(system) %timeit tree.packing(np.asarray((lon, lat, alt)).T) 3.84 s ± 129 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)coordinates = np.asarray(( np.random.uniform(-180.0, 180.0, 10000), np.random.uniform(-90.0, 90.0, 10000), np.random.uniform(-10000, 100000, 10000))).T %timeit tree.query(coordinates) 18 ms ± 377 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)``` I'm trying to use these indexes with Xarray, but I didn't quite understand how to interface with xarray. Is there anyone who could explain to me how to write my own indexer to test these indexers with xarray? Thank you in advance. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2986/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
646038170 | MDU6SXNzdWU2NDYwMzgxNzA= | 4183 | Unable to decode a date in nanoseconds | fbriol 397386 | closed | 0 | 6 | 2020-06-26T06:22:27Z | 2022-04-28T10:34:20Z | 2022-04-28T10:34:20Z | CONTRIBUTOR | What happened: If the unit of a date, is a number of nanoseconds elapsed since a reference date, xarray cannot read this dataset and throws the exception What you expected to happen: As this unit is valid in CF model, it must be decoded. Today the units that are recognized go from day to microseconds in the module Minimal Complete Verifiable Example: ```python import numpy as np import array as xr xr.DataArray( np.arange(0, 1e10, 1e9).astype("int64"), attrs=dict(units="nanoseconds since 1970-01-01")).to_netcdf("/tmp/test.nc") xr.open_dataset("/tmp/test.nc") ``` Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.8.3 | packaged by conda-forge | (default, Jun 1 2020, 17:43:00) [GCC 7.5.0] python-bits: 64 OS: Linux OS-release: 3.10.0-957.12.2.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.5 libnetcdf: 4.7.4 xarray: 0.15.1 pandas: 1.0.4 numpy: 1.17.5 scipy: 1.4.1 netCDF4: 1.5.3 pydap: None h5netcdf: 0.8.0 h5py: 2.10.0 Nio: None zarr: 2.4.0 cftime: 1.1.3 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2.18.1 distributed: 2.18.0 matplotlib: 3.2.1 cartopy: None seaborn: None numbagg: None setuptools: 47.3.1.post20200616 pip: 20.1.1 conda: 4.8.3 pytest: 5.4.3 IPython: 7.15.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4183/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
543338100 | MDExOlB1bGxSZXF1ZXN0MzU3NjI2Mzg3 | 3655 | added pyinterp to related projects | fbriol 397386 | closed | 0 | 1 | 2019-12-29T08:33:46Z | 2019-12-29T14:53:10Z | 2019-12-29T14:52:46Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/3655 | I added my project on the list of projects using Xarray. The library allows you to perform fast interpolations on unstructured, Cartesian grids and to fill indefinite values in grids. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3655/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);