issues
5 rows where user = 31700619 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: closed_at, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
650547452 | MDU6SXNzdWU2NTA1NDc0NTI= | 4196 | Convolution operation | clausmichele 31700619 | closed | 0 | 10 | 2020-07-03T11:51:15Z | 2024-02-02T18:29:40Z | 2022-04-17T18:09:14Z | CONTRIBUTOR | I would like to perform 2d convolution operation with dask-data stored in xarray, defining the kernel. Related issue are: https://github.com/pydata/xarray/issues/1142 https://github.com/pydata/xarray/issues/2010 https://github.com/pydata/xarray/issues/1323 Referring to Dask, they have a specific image-oriented API which allows for convolutions: http://image.dask.org/en/latest/dask_image.ndfilters.html And this guy already implemented convolution operation based on xarray and dask: https://github.com/serazing https://github.com/serazing/xscale https://xscale.readthedocs.io/en/latest/api.html Are there plans to implement this feature? In the meanwhile I'll try dask-image and xscale. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4196/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
599583548 | MDU6SXNzdWU1OTk1ODM1NDg= | 3969 | [BUG] xr.merge converts automatically variables into float64 | clausmichele 31700619 | closed | 0 | 2 | 2020-04-14T13:42:48Z | 2020-12-07T16:42:13Z | 2020-12-07T16:42:13Z | CONTRIBUTOR | Merging two datasets using xr.merge converts all the variables to float64 type. MCVE Code Sample``` import numpy as np import xarray as xr x = np.arange(0,10) y = np.arange(0,10) time = [0,1] data = np.zeros((10,10), dtype=bool) dataArray1 = xr.DataArray([data], coords={'time': [time[0]], 'y': y, 'x': x}, dims=['time', 'y', 'x']) dataArray2 = xr.DataArray([data], coords={'time': [time[1]], 'y': y, 'x': x}, dims=['time', 'y', 'x']) dataArray1 = dataArray1.to_dataset(name='data') dataArray2 = dataArray2.to_dataset(name='data') xr.merge([dataArray1,dataArray2]) ``` Current Output
Expected Output
Problem DescriptionThe merge function should not convert data types into float64. In this case is increasing the memory usage compared to what is expected. VersionsINSTALLED VERSIONS------------------ commit: None python: 3.6.8 (default, May 7 2019, 14:58:50) [GCC 8.3.0] python-bits: 64 OS: Linux OS-release: 4.15.0-88-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: C.UTF-8 LOCALE: en_US.UTF-8 libhdf5: None libnetcdf: None xarray: 0.15.1 pandas: 1.0.3 numpy: 1.18.2 scipy: None netCDF4: None pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: None distributed: None matplotlib: 3.2.0 cartopy: None seaborn: None numbagg: None setuptools: 46.1.3 pip: 9.0.1 conda: None pytest: None IPython: 7.13.0 sphinx: 2.4.3 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3969/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
620009114 | MDU6SXNzdWU2MjAwMDkxMTQ= | 4072 | [BUG] xr.concat inverts coordinates order | clausmichele 31700619 | closed | 0 | 5 | 2020-05-18T08:25:09Z | 2020-09-19T09:41:01Z | 2020-09-19T09:41:00Z | CONTRIBUTOR | Following the issue #3969 Merging two datasets using xr.concat inverts the coordinates order. MCVE Code Sample``` import numpy as np import xarray as xr x = np.arange(0,10) y = np.arange(0,10) time = [0,1] data = np.zeros((10,10), dtype=bool) dataArray1 = xr.DataArray([data], coords={'time': [time[0]], 'y': y, 'x': x}, dims=['time', 'y', 'x']) dataArray2 = xr.DataArray([data], coords={'time': [time[1]], 'y': y, 'x': x}, dims=['time', 'y', 'x']) dataArray1 = dataArray1.to_dataset(name='data') dataArray2 = dataArray2.to_dataset(name='data') print(dataArray1) print(xr.concat([dataArray1,dataArray2], dim='time')) ``` Current Output``` <xarray.Dataset> Dimensions: (time: 1, x: 10, y: 10) Coordinates: * time (time) int64 0 * y (y) int64 0 1 2 3 4 5 6 7 8 9 * x (x) int64 0 1 2 3 4 5 6 7 8 9 Data variables: data (time, y, x) bool False False False False ... False False False <xarray.Dataset> Dimensions: (time: 2, x: 10, y: 10) Coordinates: * x (x) int64 0 1 2 3 4 5 6 7 8 9 ##Inverted x and y * y (y) int64 0 1 2 3 4 5 6 7 8 9 * time (time) int64 0 1 Data variables: data (time, y, x) bool False False False False ... False False False ``` Expected Output``` <xarray.Dataset> Dimensions: (time: 1, x: 10, y: 10) Coordinates: * time (time) int64 0 * y (y) int64 0 1 2 3 4 5 6 7 8 9 * x (x) int64 0 1 2 3 4 5 6 7 8 9 Data variables: data (time, y, x) bool False False False False ... False False False <xarray.Dataset> Dimensions: (time: 2, x: 10, y: 10) Coordinates: * y (y) int64 0 1 2 3 4 5 6 7 8 9 * x (x) int64 0 1 2 3 4 5 6 7 8 9 * time (time) int64 0 1 Data variables: data (time, y, x) bool False False False False ... False False False ``` Problem DescriptionThe concat function should not invert the coordinates but maintain the original order. VersionsINSTALLED VERSIONS------------------ commit: None python: 3.6.8 (default, May 7 2019, 14:58:50) [GCC 8.3.0] python-bits: 64 OS: Linux OS-release: 4.15.0-88-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: C.UTF-8 LOCALE: en_US.UTF-8 libhdf5: None libnetcdf: None xarray: 0.15.1 pandas: 1.0.3 numpy: 1.18.2 scipy: None netCDF4: None pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: None distributed: None matplotlib: 3.2.0 cartopy: None seaborn: None numbagg: None setuptools: 46.1.3 pip: 9.0.1 conda: None pytest: None IPython: 7.13.0 sphinx: 2.4.3 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4072/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
618248655 | MDExOlB1bGxSZXF1ZXN0NDE4MDExMDk2 | 4063 | Io docs typo fix | clausmichele 31700619 | closed | 0 | 1 | 2020-05-14T13:50:45Z | 2020-05-14T14:28:58Z | 2020-05-14T14:28:55Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/4063 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4063/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
617990073 | MDU6SXNzdWU2MTc5OTAwNzM= | 4059 | Typo in Reading and writing files docs | clausmichele 31700619 | closed | 0 | 3 | 2020-05-14T07:24:39Z | 2020-05-14T14:28:55Z | 2020-05-14T14:28:55Z | CONTRIBUTOR | There is a typo in http://xarray.pydata.org/en/stable/io.html#rasterio
Should instead be
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4059/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);