home / github

Menu
  • Search all tables
  • GraphQL API

issues

Table actions
  • GraphQL API for issues

5 rows where user = 31700619 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: closed_at, created_at (date), updated_at (date), closed_at (date)

type 2

  • issue 4
  • pull 1

state 1

  • closed 5

repo 1

  • xarray 5
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
650547452 MDU6SXNzdWU2NTA1NDc0NTI= 4196 Convolution operation clausmichele 31700619 closed 0     10 2020-07-03T11:51:15Z 2024-02-02T18:29:40Z 2022-04-17T18:09:14Z CONTRIBUTOR      

I would like to perform 2d convolution operation with dask-data stored in xarray, defining the kernel.

Related issue are: https://github.com/pydata/xarray/issues/1142 https://github.com/pydata/xarray/issues/2010 https://github.com/pydata/xarray/issues/1323

Referring to Dask, they have a specific image-oriented API which allows for convolutions: http://image.dask.org/en/latest/dask_image.ndfilters.html

And this guy already implemented convolution operation based on xarray and dask: https://github.com/serazing https://github.com/serazing/xscale https://xscale.readthedocs.io/en/latest/api.html

Are there plans to implement this feature? In the meanwhile I'll try dask-image and xscale.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4196/reactions",
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
599583548 MDU6SXNzdWU1OTk1ODM1NDg= 3969 [BUG] xr.merge converts automatically variables into float64 clausmichele 31700619 closed 0     2 2020-04-14T13:42:48Z 2020-12-07T16:42:13Z 2020-12-07T16:42:13Z CONTRIBUTOR      

Merging two datasets using xr.merge converts all the variables to float64 type.

MCVE Code Sample

``` import numpy as np import xarray as xr

x = np.arange(0,10) y = np.arange(0,10) time = [0,1] data = np.zeros((10,10), dtype=bool) dataArray1 = xr.DataArray([data], coords={'time': [time[0]], 'y': y, 'x': x}, dims=['time', 'y', 'x']) dataArray2 = xr.DataArray([data], coords={'time': [time[1]], 'y': y, 'x': x}, dims=['time', 'y', 'x']) dataArray1 = dataArray1.to_dataset(name='data') dataArray2 = dataArray2.to_dataset(name='data') xr.merge([dataArray1,dataArray2]) ```

Current Output

<xarray.Dataset> Dimensions: (time: 2, x: 10, y: 10) Coordinates: * time (time) int64 0 1 * y (y) int64 0 1 2 3 4 5 6 7 8 9 * x (x) int64 0 1 2 3 4 5 6 7 8 9 Data variables: data (time, y, x) float64 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0

Expected Output

<xarray.Dataset> Dimensions: (time: 2, x: 10, y: 10) Coordinates: * time (time) int64 0 1 * y (y) int64 0 1 2 3 4 5 6 7 8 9 * x (x) int64 0 1 2 3 4 5 6 7 8 9 Data variables: data (time, y, x) bool False False False False False ... False False False False False

Problem Description

The merge function should not convert data types into float64. In this case is increasing the memory usage compared to what is expected.

Versions

INSTALLED VERSIONS ------------------ commit: None python: 3.6.8 (default, May 7 2019, 14:58:50) [GCC 8.3.0] python-bits: 64 OS: Linux OS-release: 4.15.0-88-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: C.UTF-8 LOCALE: en_US.UTF-8 libhdf5: None libnetcdf: None xarray: 0.15.1 pandas: 1.0.3 numpy: 1.18.2 scipy: None netCDF4: None pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: None distributed: None matplotlib: 3.2.0 cartopy: None seaborn: None numbagg: None setuptools: 46.1.3 pip: 9.0.1 conda: None pytest: None IPython: 7.13.0 sphinx: 2.4.3
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3969/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
620009114 MDU6SXNzdWU2MjAwMDkxMTQ= 4072 [BUG] xr.concat inverts coordinates order clausmichele 31700619 closed 0     5 2020-05-18T08:25:09Z 2020-09-19T09:41:01Z 2020-09-19T09:41:00Z CONTRIBUTOR      

Following the issue #3969 Merging two datasets using xr.concat inverts the coordinates order.

MCVE Code Sample

``` import numpy as np import xarray as xr

x = np.arange(0,10) y = np.arange(0,10) time = [0,1] data = np.zeros((10,10), dtype=bool) dataArray1 = xr.DataArray([data], coords={'time': [time[0]], 'y': y, 'x': x}, dims=['time', 'y', 'x']) dataArray2 = xr.DataArray([data], coords={'time': [time[1]], 'y': y, 'x': x}, dims=['time', 'y', 'x']) dataArray1 = dataArray1.to_dataset(name='data') dataArray2 = dataArray2.to_dataset(name='data')

print(dataArray1) print(xr.concat([dataArray1,dataArray2], dim='time')) ```

Current Output

``` <xarray.Dataset> Dimensions: (time: 1, x: 10, y: 10) Coordinates: * time (time) int64 0 * y (y) int64 0 1 2 3 4 5 6 7 8 9 * x (x) int64 0 1 2 3 4 5 6 7 8 9 Data variables: data (time, y, x) bool False False False False ... False False False <xarray.Dataset> Dimensions: (time: 2, x: 10, y: 10) Coordinates: * x (x) int64 0 1 2 3 4 5 6 7 8 9 ##Inverted x and y * y (y) int64 0 1 2 3 4 5 6 7 8 9 * time (time) int64 0 1 Data variables: data (time, y, x) bool False False False False ... False False False

```

Expected Output

``` <xarray.Dataset> Dimensions: (time: 1, x: 10, y: 10) Coordinates: * time (time) int64 0 * y (y) int64 0 1 2 3 4 5 6 7 8 9 * x (x) int64 0 1 2 3 4 5 6 7 8 9 Data variables: data (time, y, x) bool False False False False ... False False False <xarray.Dataset> Dimensions: (time: 2, x: 10, y: 10) Coordinates: * y (y) int64 0 1 2 3 4 5 6 7 8 9 * x (x) int64 0 1 2 3 4 5 6 7 8 9 * time (time) int64 0 1 Data variables: data (time, y, x) bool False False False False ... False False False

```

Problem Description

The concat function should not invert the coordinates but maintain the original order.

Versions

INSTALLED VERSIONS ------------------ commit: None python: 3.6.8 (default, May 7 2019, 14:58:50) [GCC 8.3.0] python-bits: 64 OS: Linux OS-release: 4.15.0-88-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: C.UTF-8 LOCALE: en_US.UTF-8 libhdf5: None libnetcdf: None xarray: 0.15.1 pandas: 1.0.3 numpy: 1.18.2 scipy: None netCDF4: None pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: None distributed: None matplotlib: 3.2.0 cartopy: None seaborn: None numbagg: None setuptools: 46.1.3 pip: 9.0.1 conda: None pytest: None IPython: 7.13.0 sphinx: 2.4.3
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4072/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
618248655 MDExOlB1bGxSZXF1ZXN0NDE4MDExMDk2 4063 Io docs typo fix clausmichele 31700619 closed 0     1 2020-05-14T13:50:45Z 2020-05-14T14:28:58Z 2020-05-14T14:28:55Z CONTRIBUTOR   0 pydata/xarray/pulls/4063
  • [x] Closes #4059
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4063/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
617990073 MDU6SXNzdWU2MTc5OTAwNzM= 4059 Typo in Reading and writing files docs clausmichele 31700619 closed 0     3 2020-05-14T07:24:39Z 2020-05-14T14:28:55Z 2020-05-14T14:28:55Z CONTRIBUTOR      

There is a typo in http://xarray.pydata.org/en/stable/io.html#rasterio

In [35]: rds4326 = rio.rio.reproject("epsg:4326")

Should instead be

In [35]: rds4326 = rds.rio.reproject("epsg:4326")

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4059/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 21.082ms · About: xarray-datasette