issues
3 rows where user = 244887 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
316461072 | MDExOlB1bGxSZXF1ZXN0MTgzMjA1NTA1 | 2070 | Keep attrs in call to astype | gajomi 244887 | closed | 0 | 5 | 2018-04-21T04:37:59Z | 2020-08-19T20:34:34Z | 2020-08-19T20:34:34Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/2070 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2070/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
292054887 | MDU6SXNzdWUyOTIwNTQ4ODc= | 1862 | Weird looking plots from combined DataArrays | gajomi 244887 | closed | 0 | 5 | 2018-01-26T22:48:04Z | 2019-01-22T22:48:54Z | 2019-01-22T22:48:54Z | CONTRIBUTOR | I am trying to figure out how to plot 2 dimensional data from multiple data arrays that share common coordinates. My first guess was to throw the data arrays into a dataset and call a plot method, but it seems that is unsupported (perhaps with good reason). My second idea was to trying to "merge" the data arrays into a single one and then call the plot method. Here is what I get: ```python N = 2**6 x, y = range(N), range(N) n = int(N/4) A, B = np.random.rand(n,n), np.random.rand(n,n) xrA = xr.DataArray(A, dims=('x','y'), coords={'x':x[:n],'y':y[:n]}) xrB = xr.DataArray(B, dims=('x','y'), coords={'x':x[-n:],'y':y[-n:]}) xrAB = xrA.combine_first(xrB) dataarrays = [xrA,xrB,xrAB] fig,axs = plt.subplots(1,3,figsize=(15,4)) for ax,data in zip(axs,dataarrays): data.plot(ax=ax) ``` I was not expecting to see the funny looking artifacts extending from the edges of the region with non nan data. A slightly more elaborate version with three non nan regions shows similar behavior: ``` xrC = xr.DataArray(C, dims=('x','y'), coords={'x':x[15:n+15],'y':y[-n-10:-10]}) xrABC = xrA.combine_first(xrB).combine_first(xrC) fig,ax = plt.subplots(figsize=(5,5)) xrABC.plot(ax=ax) ``` Is this a bug or a feature? If not a bug, how should I go about plotting my array data so that nan regions look as such? Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1862/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
294066453 | MDExOlB1bGxSZXF1ZXN0MTY2OTM1MzU2 | 1884 | links from docstrings to documentation for apply_ufunc and open_mfdataset | gajomi 244887 | closed | 0 | 1 | 2018-02-03T00:51:05Z | 2018-02-04T21:43:56Z | 2018-02-04T21:43:51Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/1884 | Adds links and inline prose to docstrings referencing relevant sections of online documentation.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1884/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);