issues
1 row where user = 22961670 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2228373305 | I_kwDOAMm_X86E0kc5 | 8915 | Weird behavior of DataSet.where(... , drop=True) | johannespletzer 22961670 | closed | 0 | 4 | 2024-04-05T16:03:05Z | 2024-04-08T09:32:48Z | 2024-04-08T09:32:48Z | NONE | What happened?I work with an aircraft emission dataset that is freely available online: emission dataset During my calculations I eventually convert the Example 1: Along some dimensions data points vanished if Example 2: For other dimensions (these?) data points appeared elsewhere if What did you expect to happen?I expect for my calculations to return the same results, regardless of whether drop=True is active or not. Minimal Complete Verifiable Example```Python !wget "https://zenodo.org/records/10818082/files/Emission_Inventory_H2O_Optimized_v0.1_MR3_Fleet_BRU-MYA_2075.nc" import matplotlib.pyplot as plt import xarray as xr nc_file = xr.open_dataset('Emission_Inventory_H2O_Optimized_v0.1_MR3_Fleet_BRU-MYA_2075.nc') fig, axs = plt.subplots(1,2,figsize=(10,4)) nc_file.H2O.where(nc_file.H2O!=0, drop=True).sum(('lon','time')).plot.contour(x='lat',ax=axs[0]) axs[0].set_xlim(-50,90) axs[0].set_title('With drop=True') nc_file.H2O.where(nc_file.H2O!=0, drop=False).sum(('lon','time')).plot.contour(x='lat',ax=axs[1]) axs[1].set_xlim(-50,90) axs[1].set_title('With drop=False') plt.tight_layout() plt.show() fig, axs = plt.subplots(1,2,figsize=(10,4)) nc_file.H2O.where(nc_file.H2O!=0, drop=True).sum(('lat','time')).plot.contour(x='lon',ax=axs[0]) axs[0].set_title('With drop=True') nc_file.H2O.where(nc_file.H2O!=0, drop=False).sum(('lat','time')).plot.contour(x='lon',ax=axs[1]) axs[1].set_title('With drop=False') plt.tight_layout() plt.show() ``` MVCE confirmation
Relevant log outputNo response Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.9 | packaged by Anaconda, Inc. | (main, Mar 1 2023, 18:18:15) [MSC v.1916 64 bit (AMD64)]
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 165 Stepping 2, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: ('en_US', 'ISO8859-1')
libhdf5: 1.14.0
libnetcdf: 4.9.2
xarray: 2022.11.0
pandas: 1.5.3
numpy: 1.23.5
scipy: 1.13.0
netCDF4: 1.6.5
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.6.3
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: 1.3.5
dask: None
distributed: None
matplotlib: 3.7.0
cartopy: 0.21.1
seaborn: 0.12.2
numbagg: None
fsspec: None
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 65.6.3
pip: 22.3.1
conda: None
pytest: None
IPython: 8.10.0
sphinx: None
|
{
"url": "https://api.github.com/repos/pydata/xarray/issues/8915/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);