issues
3 rows where user = 222557 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
324105458 | MDExOlB1bGxSZXF1ZXN0MTg4ODAwMTI4 | 2152 | ENH: Plotting for groupby_bins | maahn 222557 | closed | 0 | 12 | 2018-05-17T16:53:33Z | 2018-10-23T15:20:40Z | 2018-10-23T08:19:23Z | NONE | 0 | pydata/xarray/pulls/2152 | DataArrays created with e.g. groupy_bins have coords arrays consisting of pd._libs.interval.Interval. Therefore, they cannot be plotted. The small patch replaces the the pd._libs.interval.Interval values with the interval's center point and adds
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2152/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
350112372 | MDExOlB1bGxSZXF1ZXN0MjA4MDQxMTcy | 2364 | Faster unstack | maahn 222557 | closed | 0 | 2 | 2018-08-13T16:58:30Z | 2018-08-15T00:19:13Z | 2018-08-15T00:18:28Z | NONE | 0 | pydata/xarray/pulls/2364 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2364/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
166449498 | MDU6SXNzdWUxNjY0NDk0OTg= | 908 | Histogram plot of DataArray can be extremely slow | maahn 222557 | closed | 0 | 3 | 2016-07-19T22:11:38Z | 2016-10-22T00:58:11Z | 2016-10-22T00:58:11Z | NONE | The speed of plotting a histogram of a large DataArray depends a lot how you do it: ``` import xarray as xr import numpy as np import matplotlib.pyplot as plt nPoints = 100000 data = xr.DataArray(np.random.random(nPoints),dims=['time'],coords=[np.arange(nPoints)]) ``` It take sonly some ms if you use ``` plt.figure() %time data.plot.hist() plt.figure() %time plt.hist(data.values) ``` However, if you omit
Do if one forgets to add |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/908/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);