issues
3 rows where user = 21273359 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 864505158 | MDU6SXNzdWU4NjQ1MDUxNTg= | 5206 | How can I apply Groupby function and still keep the chunks ? | babameme 21273359 | closed | 1 | 1 | 2021-04-22T03:33:12Z | 2021-04-22T17:35:42Z | 2021-04-22T17:35:41Z | NONE |
da show: ```
da.groupby("x").quantile(0.02, dim = "y") ``` Result:
DetailsINSTALLED VERSIONS ------------------ commit: None python: 3.7.8 | packaged by conda-forge | (default, Jul 31 2020, 02:25:08) [GCC 7.5.0] python-bits: 64 OS: Linux OS-release: 5.8.9-1.el7.elrepo.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.12.0 libnetcdf: 4.7.4 xarray: 0.17.0 pandas: 1.1.4 numpy: 1.19.1 scipy: 1.5.2 netCDF4: 1.5.6 pydap: None h5netcdf: None h5py: 3.2.1 Nio: None zarr: None cftime: 1.4.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2.30.0 distributed: 2.30.1 matplotlib: 3.3.2 cartopy: None seaborn: 0.11.0 numbagg: None pint: None setuptools: 49.6.0.post20210108 pip: 21.0.1 conda: None pytest: 6.0.2 IPython: 7.22.0 sphinx: 3.2.1 |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/5206/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue | ||||||
| 864494256 | MDU6SXNzdWU4NjQ0OTQyNTY= | 5205 | Clip function with minimum or maximum nan value | babameme 21273359 | closed | 1 | 9 | 2021-04-22T03:06:24Z | 2021-04-22T17:34:59Z | 2021-04-22T17:34:58Z | NONE | Hi team,
I see that with 1-dim DataArray, we can clip with minimum or maximum nan value:
Result:
But with 2-dims DataArray, if one of two bounds is np.nan, we will receive nan value:
Result:
The clip function perform well with 2-dims as it done in 1-dims |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/5205/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue | ||||||
| 858671865 | MDU6SXNzdWU4NTg2NzE4NjU= | 5162 | Monthly Rolling | babameme 21273359 | closed | 1 | 3 | 2021-04-15T09:09:43Z | 2021-04-15T21:23:26Z | 2021-04-15T21:23:25Z | NONE | Hi team, I am trying to rolling by Monthly with Xarray DataArray With Pandas Dataframe, i can use: df.rolling("30D") or df.rolling("1M") How can i do this with Xarray ? Thanks |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/5162/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);