home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

1 row where user = 20365917 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date)

type 1

  • issue 1

state 1

  • closed 1

repo 1

  • xarray 1
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
705082452 MDU6SXNzdWU3MDUwODI0NTI= 4441 support nd fancy indexing hafez-ahmad 20365917 closed 0     1 2020-09-20T10:12:59Z 2020-09-21T19:25:14Z 2020-09-21T19:24:46Z NONE      

I used indexing in the single dataset but when I tried to concatenate full dataset . NotImplementedError: Don't yet support nd fancy indexing

f2010_1=xr.open_mfdataset('C:/Users/hafez/personal/python_projects/sea_level_gridded/data/2010/*.nc',combine='by_coords',concat_dim='time') ds = f2010_1.assign_coords(longitude=(((f2010_1.longitude + 180) % 360) - 180)).sortby('longitude') min_lon = 75.0 min_lat = 2.0 max_lon = 100.0 max_lat = 22.0 mask_lon = (ds.longitude >= min_lon) & (ds.longitude<= max_lon) mask_lat = (ds.latitude >= min_lat) & (ds.latitude<= max_lat) cropped_ds = ds.where(mask_lon & mask_lat, drop=True) ``` error: NotImplementedError Traceback (most recent call last) <ipython-input-9-a0698c6d77da> in <module> 6 mask_lon = (ds.longitude >= min_lon) & (ds.longitude<= max_lon) 7 mask_lat = (ds.latitude >= min_lat) & (ds.latitude<= max_lat) ----> 8 cropped_ds = ds.where(mask_lon & mask_lat, drop=True) 9 cropped_ds.to_netcdf('C:/Users/hafez/personal/python_projects/sea_level_gridded/data/2010/2010_full.nc')

c:\users\hafez\miniconda3\lib\site-packages\xarray\core\common.py in where(self, cond, other, drop) 1243 indexers = {k: np.unique(v) for k, v in nonzeros} 1244 -> 1245 self = self.isel(indexers) 1246 cond = cond.isel(indexers) 1247

c:\users\hafez\miniconda3\lib\site-packages\xarray\core\dataset.py in isel(self, indexers, drop, missing_dims, **indexers_kwargs) 1963 var_indexers = {k: v for k, v in indexers.items() if k in var_value.dims} 1964 if var_indexers: -> 1965 var_value = var_value.isel(var_indexers) 1966 if drop and var_value.ndim == 0 and var_name in coord_names: 1967 coord_names.remove(var_name)

c:\users\hafez\miniconda3\lib\site-packages\xarray\core\variable.py in isel(self, indexers, missing_dims, **indexers_kwargs) 1072 1073 key = tuple(indexers.get(dim, slice(None)) for dim in self.dims) -> 1074 return self[key] 1075 1076 def squeeze(self, dim=None):

c:\users\hafez\miniconda3\lib\site-packages\xarray\core\variable.py in getitem(self, key) 713 """ 714 dims, indexer, new_order = self._broadcast_indexes(key) --> 715 data = as_indexable(self._data)[indexer] 716 if new_order: 717 data = duck_array_ops.moveaxis(data, range(len(new_order)), new_order)

c:\users\hafez\miniconda3\lib\site-packages\xarray\core\indexing.py in getitem(self, key) 1274 def getitem(self, key): 1275 array, key = self._indexing_array_and_key(key) -> 1276 return array[key] 1277 1278 def setitem(self, key, value):

c:\users\hafez\miniconda3\lib\site-packages\dask\array\core.py in getitem(self, index) 1583 1584 out = "getitem-" + tokenize(self, index2) -> 1585 dsk, chunks = slice_array(out, self.name, self.chunks, index2, self.itemsize) 1586 1587 graph = HighLevelGraph.from_collections(out, dsk, dependencies=[self])

c:\users\hafez\miniconda3\lib\site-packages\dask\array\slicing.py in slice_array(out_name, in_name, blockdims, index, itemsize) 160 161 # Pass down to next function --> 162 dsk_out, bd_out = slice_with_newaxes(out_name, in_name, blockdims, index, itemsize) 163 164 bd_out = tuple(map(tuple, bd_out))

c:\users\hafez\miniconda3\lib\site-packages\dask\array\slicing.py in slice_with_newaxes(out_name, in_name, blockdims, index, itemsize) 182 183 # Pass down and do work --> 184 dsk, blockdims2 = slice_wrap_lists(out_name, in_name, blockdims, index2, itemsize) 185 186 if where_none:

c:\users\hafez\miniconda3\lib\site-packages\dask\array\slicing.py in slice_wrap_lists(out_name, in_name, blockdims, index, itemsize) 228 ] 229 if len(where_list) > 1: --> 230 raise NotImplementedError("Don't yet support nd fancy indexing") 231 # Is the single list an empty list? In this case just treat it as a zero 232 # length slice

NotImplementedError: Don't yet support nd fancy indexing ```

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4441/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 20.044ms · About: xarray-datasette