issues
3 rows where user = 19657652 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
575939446 | MDU6SXNzdWU1NzU5Mzk0NDY= | 3830 | Documentation request: add examples for carrying out "ncecat" in xarray | lukelbd 19657652 | open | 0 | 4 | 2020-03-05T01:58:17Z | 2023-04-13T20:06:20Z | NONE | In climate science, a very common task involves concatenating NetCDF files with identical variables, dimensions, and coordinates along a brand new "ensemble member" or "record" dimension. With the NetCDF Operators, this is accomplished using MCVE Code SampleCurrently, it seems the correct way to do this in xarray is with
Problem DescriptionWhile this works, there does not seem to be any mention of this use case in the It would be nice to have examples in
Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3830/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
661076732 | MDU6SXNzdWU2NjEwNzY3MzI= | 4239 | Xarray dimension interpolation strips coordinate attributes | lukelbd 19657652 | closed | 0 | 1 | 2020-07-19T21:19:35Z | 2021-04-27T07:00:07Z | 2021-04-27T07:00:07Z | NONE | What happened: What you expected to happen: Preserved coordinate attributes. Minimal Complete Verifiable Example: Input: ```python import xarray as xr import numpy as np data = xr.DataArray( np.random.rand(5), dims='x', coords={'x': ('x', np.arange(5), {'foo': 'bar'})} ) print(data.x.attrs) # initial attributes print(data.sel(x=2).x.attrs) # sel and isel preserve attributes print(data.interp(x=2.5).x.attrs) # interp does not preserve attributes with xr.set_options(keep_attrs=True): print(data.interp(x=2.5).x.attrs) # keep_attrs does nothing ``` Output:
Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.8.3 | packaged by conda-forge | (default, Jun 1 2020, 17:43:00) [GCC 7.5.0] python-bits: 64 OS: Linux OS-release: 3.10.0-957.27.2.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: en_US.UTF-8 LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.15.1 pandas: 1.0.4 numpy: 1.18.4 scipy: 1.4.1 netCDF4: 1.5.3 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.1.3 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2.17.2 distributed: 2.18.0 matplotlib: 3.2.1 cartopy: 0.18.0 seaborn: None numbagg: None setuptools: 47.3.0.post20200616 pip: 20.1.1 conda: 4.8.3 pytest: None IPython: 7.15.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4239/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
639618568 | MDU6SXNzdWU2Mzk2MTg1Njg= | 4161 | Dark theme-friendly HTML Dataset and DataArray reprs for jupyter notebooks? | lukelbd 19657652 | closed | 0 | 2 | 2020-06-16T12:18:23Z | 2020-06-17T18:33:58Z | 2020-06-17T18:33:58Z | NONE | Xarray's HTML The below example is from a jupyter notebook with the "onedork" dark theme from jupyter-themes. It results in black text against a dark background for the section headers (Coordinates, Dimensions, etc.) and DataArray data tables, and a light background for the coordinate and Dataset data tables. ```python Dataset reprimport numpy as np import xarray as xr ds = xr.Dataset( { 'temp': (('x', 'y'), np.random.rand(10, 20), {'long_name': 'temperature', 'units': 'degrees_Celsius'}), 'x': ('x', np.arange(10)), 'y': ('y', np.arange(20)), }, attrs={'description': 'example dataset'} ) ds ``` ```python DataArray reprds.temp ``` Note that, by contrast, the text repr is dark theme friendly: ```python Text reprxr.set_options(display_style='text') ds ``` VersionsJupyter versionsjupyter core : 4.6.3 jupyter-notebook : 6.0.3 qtconsole : 4.7.4 ipython : 7.15.0 ipykernel : 5.3.0 jupyter client : 6.1.3 jupyter lab : not installed nbconvert : 5.6.1 ipywidgets : 7.5.1 nbformat : 5.0.6 traitlets : 4.3.3Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.8.3 | packaged by conda-forge | (default, Jun 1 2020, 17:43:00) [GCC 7.5.0] python-bits: 64 OS: Linux OS-release: 3.10.0-957.27.2.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: en_US.UTF-8 LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: None libnetcdf: None xarray: 0.15.1 pandas: 1.0.4 numpy: 1.18.4 scipy: 1.4.1 netCDF4: None pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2.17.2 distributed: 2.18.0 matplotlib: 3.2.1 cartopy: 0.18.0 seaborn: None numbagg: None setuptools: 47.1.1.post20200529 pip: 20.1.1 conda: 4.8.3 pytest: None IPython: 7.15.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4161/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);