home / github

Menu
  • Search all tables
  • GraphQL API

issues

Table actions
  • GraphQL API for issues

3 rows where user = 19657652 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date)

state 2

  • closed 2
  • open 1

type 1

  • issue 3

repo 1

  • xarray 3
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
575939446 MDU6SXNzdWU1NzU5Mzk0NDY= 3830 Documentation request: add examples for carrying out "ncecat" in xarray lukelbd 19657652 open 0     4 2020-03-05T01:58:17Z 2023-04-13T20:06:20Z   NONE      

In climate science, a very common task involves concatenating NetCDF files with identical variables, dimensions, and coordinates along a brand new "ensemble member" or "record" dimension. With the NetCDF Operators, this is accomplished using ncecat.

MCVE Code Sample

Currently, it seems the correct way to do this in xarray is with xarray.combine_nested as follows:

python import xarray as xr files = ['member1.nc', 'member2.nc', ...] ds = xr.open_mfdataset( files, combine='nested', concat_dim='record', )

Problem Description

While this works, there does not seem to be any mention of this use case in the combine_nested or open_mfdataset docs... and using combine='nested' to concatenate along a brand new dimension feels quite unintuitive to me.

It would be nice to have examples in combine_nested and/or open_mfdataset with this special usage or mention the possibility of creating brand new dimensions with concat_dim. For example:

python In [1]: import xarray as xr ...: datasets = [ ...: xr.Dataset({'temp': (('x', 'y'), np.random.rand(10, 20))}) ...: for i in range(3) ...: ] ...: xr.combine_nested(datasets, concat_dim='record') Out[1]: <xarray.Dataset> Dimensions: (record: 3, x: 10, y: 20) Dimensions without coordinates: record, x, y Data variables: temp (record, x, y) float64 0.32 0.4897 0.2659 ... 0.3485 0.0251 0.399

Output of xr.show_versions()

n/a

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3830/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue
661076732 MDU6SXNzdWU2NjEwNzY3MzI= 4239 Xarray dimension interpolation strips coordinate attributes lukelbd 19657652 closed 0     1 2020-07-19T21:19:35Z 2021-04-27T07:00:07Z 2021-04-27T07:00:07Z NONE      

What happened: DataArray.interp strips the dimension coordinate attributes.

What you expected to happen: Preserved coordinate attributes.

Minimal Complete Verifiable Example:

Input:

```python import xarray as xr import numpy as np

data = xr.DataArray( np.random.rand(5), dims='x', coords={'x': ('x', np.arange(5), {'foo': 'bar'})} )

print(data.x.attrs) # initial attributes print(data.sel(x=2).x.attrs) # sel and isel preserve attributes print(data.interp(x=2.5).x.attrs) # interp does not preserve attributes with xr.set_options(keep_attrs=True): print(data.interp(x=2.5).x.attrs) # keep_attrs does nothing ```

Output:

python {'foo': 'bar'} {'foo': 'bar'} {} {}

Environment:

Output of <tt>xr.show_versions()</tt> INSTALLED VERSIONS ------------------ commit: None python: 3.8.3 | packaged by conda-forge | (default, Jun 1 2020, 17:43:00) [GCC 7.5.0] python-bits: 64 OS: Linux OS-release: 3.10.0-957.27.2.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: en_US.UTF-8 LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.15.1 pandas: 1.0.4 numpy: 1.18.4 scipy: 1.4.1 netCDF4: 1.5.3 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.1.3 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2.17.2 distributed: 2.18.0 matplotlib: 3.2.1 cartopy: 0.18.0 seaborn: None numbagg: None setuptools: 47.3.0.post20200616 pip: 20.1.1 conda: 4.8.3 pytest: None IPython: 7.15.0 sphinx: None
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4239/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
639618568 MDU6SXNzdWU2Mzk2MTg1Njg= 4161 Dark theme-friendly HTML Dataset and DataArray reprs for jupyter notebooks? lukelbd 19657652 closed 0     2 2020-06-16T12:18:23Z 2020-06-17T18:33:58Z 2020-06-17T18:33:58Z NONE      

Xarray's HTML Dataset and DataArray reprs are evidently not compatible with "dark" jupyter notebook themes. They seem to work fine with the dark jupyter lab theme, and since jupyter lab is the way of the future perhaps this issue is obsolete, but thought I'd mention it.

The below example is from a jupyter notebook with the "onedork" dark theme from jupyter-themes. It results in black text against a dark background for the section headers (Coordinates, Dimensions, etc.) and DataArray data tables, and a light background for the coordinate and Dataset data tables.

```python

Dataset repr

import numpy as np import xarray as xr ds = xr.Dataset( { 'temp': (('x', 'y'), np.random.rand(10, 20), {'long_name': 'temperature', 'units': 'degrees_Celsius'}), 'x': ('x', np.arange(10)), 'y': ('y', np.arange(20)), }, attrs={'description': 'example dataset'} ) ds ```

```python

DataArray repr

ds.temp ```

Note that, by contrast, the text repr is dark theme friendly:

```python

Text repr

xr.set_options(display_style='text') ds ```

Versions

Jupyter versions jupyter core : 4.6.3 jupyter-notebook : 6.0.3 qtconsole : 4.7.4 ipython : 7.15.0 ipykernel : 5.3.0 jupyter client : 6.1.3 jupyter lab : not installed nbconvert : 5.6.1 ipywidgets : 7.5.1 nbformat : 5.0.6 traitlets : 4.3.3
Output of <tt>xr.show_versions()</tt> INSTALLED VERSIONS ------------------ commit: None python: 3.8.3 | packaged by conda-forge | (default, Jun 1 2020, 17:43:00) [GCC 7.5.0] python-bits: 64 OS: Linux OS-release: 3.10.0-957.27.2.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: en_US.UTF-8 LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: None libnetcdf: None xarray: 0.15.1 pandas: 1.0.4 numpy: 1.18.4 scipy: 1.4.1 netCDF4: None pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2.17.2 distributed: 2.18.0 matplotlib: 3.2.1 cartopy: 0.18.0 seaborn: None numbagg: None setuptools: 47.1.1.post20200529 pip: 20.1.1 conda: 4.8.3 pytest: None IPython: 7.15.0 sphinx: None
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4161/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 22.85ms · About: xarray-datasette