home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

6 rows where user = 1956032 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date)

type 2

  • issue 3
  • pull 3

state 1

  • closed 6

repo 1

  • xarray 6
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
1064803302 PR_kwDOAMm_X84vE1Ty 6031 Add argopy to ecosystem.rst doc page gmaze 1956032 closed 0     1 2021-11-26T21:05:39Z 2021-11-27T13:36:21Z 2021-11-27T13:36:21Z CONTRIBUTOR   0 pydata/xarray/pulls/6031

As it says, this is to add the https://github.com/euroargodev/argopy xarray related project to the documentation page.

argopy is a python library that aims to ease Argo data access, manipulation and visualisation for standard users as well as Argo experts.

argopy comes with a xarray accessor argo for Argo dataset

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6031/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1064799086 PR_kwDOAMm_X84vE0ji 6030 Add argopy to Related Projects doc page gmaze 1956032 closed 0     0 2021-11-26T20:53:48Z 2021-11-26T21:00:02Z 2021-11-26T21:00:02Z CONTRIBUTOR   0 pydata/xarray/pulls/6030

As it says, this is to add the https://github.com/euroargodev/argopy xarray related project to the documentation page.

argopy is a python library that aims to ease Argo data access, manipulation and visualisation for standard users as well as Argo experts.

argopy comes with a xarray accessor argo for Argo dataset

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6030/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
500949040 MDU6SXNzdWU1MDA5NDkwNDA= 3361 Recommendations for domain-specific accessor documentation gmaze 1956032 closed 0     6 2019-10-01T14:48:39Z 2020-08-09T22:45:48Z 2020-08-09T22:45:48Z CONTRIBUTOR      

Hi,

I'm currently working on an ocean domain specific accessor for a machine learning technique (https://github.com/gmaze/pyxpcm/tree/nfeatures).
I implemented an xarray.DataSet accessor (name space pyxpcm) that I'd like to document.

I thus wonder whether the xarray/pangeo community has recommendations about how to do this appropriately ?

Right now, I simply have an API auto-generated page, see: https://pyxpcm-dev.readthedocs.io/en/latest/api.html#xarray-dataset-accessor-the-pyxpcm-name-space

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3361/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
529501991 MDExOlB1bGxSZXF1ZXN0MzQ2MzY3ODU3 3578 Add pyXpcm to Related Projects doc page gmaze 1956032 closed 0     2 2019-11-27T18:06:55Z 2019-11-27T19:39:07Z 2019-11-27T19:39:06Z CONTRIBUTOR   0 pydata/xarray/pulls/3578

As it says, this is just to add the https://github.com/obidam/pyxpcm xarray related project to the documentation page.

pyXpcm is a python package to create and work with ocean Profile Classification Model that consumes and produces Xarray objects.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3578/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
275744315 MDU6SXNzdWUyNzU3NDQzMTU= 1732 IndexError when printing dataset from an Argo file gmaze 1956032 closed 0     14 2017-11-21T15:04:16Z 2017-11-27T08:21:15Z 2017-11-25T19:49:24Z CONTRIBUTOR      

Working with a netcdf Argo data file, I encountered the following error: ```python

Sample data file here: https://storage.googleapis.com/myargo/sample/4902076_prof.nc

argofile = '4902076_prof.nc' ds = xr.open_dataset(argofile) print ds

[...full trace below...] Out[]: IndexError: The indexing operation you are attempting to perform is not valid on netCDF4.Variable object. Try loading your data into memory first by calling .load(). Original traceback: Traceback (most recent call last): File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/backends/netCDF4_.py", line 62, in getitem data = getitem(self.get_array(), key) File "netCDF4/_netCDF4.pyx", line 3961, in netCDF4._netCDF4.Variable.getitem File "netCDF4/_netCDF4.pyx", line 4796, in netCDF4._netCDF4.Variable._get IndexError

``` The error remains the same even if I try to load the data as suggested in the error message. However, I can keep working with the dataset and access variable. This only affects the printing of the ds object.

I can't get to determine where in my package updating workflow this really pop out. It used to work very fined up to xarray version 0.9.5. Here I'm using 0.10.0rc1 (see full version details below).

It is worth noting that using the 'scipy' engine solves the issue ! python ds = xr.open_dataset(argofile, engine='scipy') print ds Out[48]: <xarray.Dataset> Dimensions: (N_CALIB: 1, N_HISTORY: 0, N_LEVELS: 1007, N_PARAM: 3, N_PROF: 33) Dimensions without coordinates: N_CALIB, N_HISTORY, N_LEVELS, N_PARAM, N_PROF Data variables: PROFILE_PRES_QC (N_PROF) object ... DATA_TYPE object ... JULD (N_PROF) datetime64[ns] . [...] I suspect a compatibility issue somewhere with netCDF4 Any ideas ? thanks

Exact trace:

python print ds Traceback (most recent call last): File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/IPython/core/interactiveshell.py", line 2881, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-31-63698f3c943a>", line 1, in <module> print ds File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/core/formatting.py", line 64, in __repr__ return ensure_valid_repr(self.__unicode__()) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/core/dataset.py", line 1050, in __unicode__ return formatting.dataset_repr(self) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/core/formatting.py", line 426, in dataset_repr summary.append(data_vars_repr(ds.data_vars, col_width=col_width)) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/core/formatting.py", line 297, in _mapping_repr summary += [summarizer(k, v, col_width) for k, v in mapping.items()] File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/core/formatting.py", line 236, in summarize_datavar return summarize_variable(name, var.variable, col_width, show_values) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/core/formatting.py", line 212, in summarize_variable elif isinstance(var.data, dask_array_type): File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/core/variable.py", line 308, in data return self.values File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/core/variable.py", line 369, in values return _as_array_or_item(self._data) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/core/variable.py", line 225, in _as_array_or_item data = np.asarray(data) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/numpy/core/numeric.py", line 482, in asarray return array(a, dtype, copy=False, order=order) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/core/indexing.py", line 412, in __array__ self._ensure_cached() File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/core/indexing.py", line 409, in _ensure_cached self.array = np.asarray(self.array) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/numpy/core/numeric.py", line 482, in asarray return array(a, dtype, copy=False, order=order) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/core/indexing.py", line 393, in __array__ return np.asarray(self.array, dtype=dtype) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/numpy/core/numeric.py", line 482, in asarray return array(a, dtype, copy=False, order=order) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/core/indexing.py", line 360, in __array__ return np.asarray(array[self.key], dtype=None) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/conventions.py", line 384, in __getitem__ return mask_and_scale(self.array[key], self.fill_value, File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/conventions.py", line 493, in __getitem__ return char_to_bytes(self.array[key]) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/conventions.py", line 635, in char_to_bytes arr = np.array(arr, copy=False, order='C') File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/core/indexing.py", line 360, in __array__ return np.asarray(array[self.key], dtype=None) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/backends/netCDF4_.py", line 73, in __getitem__ raise IndexError(msg) IndexError: The indexing operation you are attempting to perform is not valid on netCDF4.Variable object. Try loading your data into memory first by calling .load(). Original traceback: Traceback (most recent call last): File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/backends/netCDF4_.py", line 62, in __getitem__ data = getitem(self.get_array(), key) File "netCDF4/_netCDF4.pyx", line 3961, in netCDF4._netCDF4.Variable.__getitem__ File "netCDF4/_netCDF4.pyx", line 4796, in netCDF4._netCDF4.Variable._get IndexError

Expected Output:

python In [26]: print ds <xarray.Dataset> Dimensions: (N_CALIB: 1, N_HISTORY: 0, N_LEVELS: 1007, N_PARAM: 3, N_PROF: 33) Dimensions without coordinates: N_CALIB, N_HISTORY, N_LEVELS, N_PARAM, N_PROF Data variables: DATA_TYPE object 'Argo profile ' FORMAT_VERSION object '3.1 ' HANDBOOK_VERSION object '1.2 ' REFERENCE_DATE_TIME object '19500101000000' DATE_CREATION object '20150402105716' DATE_UPDATE object '20160127150022' PLATFORM_NUMBER (N_PROF) object '4902076 ' '4902076 ' ... PROJECT_NAME (N_PROF) object 'US ARGO PROJECT ' ... PI_NAME (N_PROF) object 'GREGORY C. JOHNSON ' ... STATION_PARAMETERS (N_PROF, N_PARAM) object 'PRES ' ... CYCLE_NUMBER (N_PROF) float64 1.0 2.0 4.0 5.0 6.0 7.0 ... DIRECTION (N_PROF) object 'A' 'A' 'A' 'A' 'A' 'A' ... DATA_CENTRE (N_PROF) object 'AO' 'AO' 'AO' 'AO' 'AO' ... DC_REFERENCE (N_PROF) object '5448_0469_001 ' ... DATA_STATE_INDICATOR (N_PROF) object '2B ' '2B ' '2B ' ... DATA_MODE (N_PROF) object 'A' 'A' 'A' 'A' 'A' 'A' ... PLATFORM_TYPE (N_PROF) object 'NAVISIR ' ... FLOAT_SERIAL_NO (N_PROF) object '0469 ' ... FIRMWARE_VERSION (N_PROF) object '011514 ' ... WMO_INST_TYPE (N_PROF) object '863 ' '863 ' '863 ' ... JULD (N_PROF) datetime64[ns] 2015-03-03T08:56:39.984000 ... JULD_QC (N_PROF) object '1' '1' '1' '1' '1' '1' ... JULD_LOCATION (N_PROF) datetime64[ns] 2015-03-03T09:12:09.993600 ... LATITUDE (N_PROF) float64 20.26 20.11 21.53 22.0 ... LONGITUDE (N_PROF) float64 -121.5 -121.5 -121.1 ... POSITION_QC (N_PROF) object '1' '1' '1' '1' '1' '1' ... POSITIONING_SYSTEM (N_PROF) object 'GPS ' 'GPS ' ... PROFILE_PRES_QC (N_PROF) object 'A' 'A' 'A' 'A' 'A' 'A' ... PROFILE_TEMP_QC (N_PROF) object 'A' 'A' 'A' 'A' 'A' 'A' ... PROFILE_PSAL_QC (N_PROF) object 'A' 'A' 'A' 'A' 'A' 'A' ... VERTICAL_SAMPLING_SCHEME (N_PROF) object 'Primary sampling: averaged [] ' ... CONFIG_MISSION_NUMBER (N_PROF) float64 1.0 2.0 4.0 5.0 6.0 7.0 ... PRES (N_PROF, N_LEVELS) float64 4.0 6.0 8.0 ... PRES_QC (N_PROF, N_LEVELS) object '1' '1' '1' '1' ... PRES_ADJUSTED (N_PROF, N_LEVELS) float64 3.73 5.73 7.73 ... PRES_ADJUSTED_QC (N_PROF, N_LEVELS) object '1' '1' '1' '1' ... PRES_ADJUSTED_ERROR (N_PROF, N_LEVELS) float64 nan nan nan nan ... TEMP (N_PROF, N_LEVELS) float64 22.24 22.24 ... TEMP_QC (N_PROF, N_LEVELS) object '1' '1' '1' '1' ... TEMP_ADJUSTED (N_PROF, N_LEVELS) float64 22.24 22.24 ... TEMP_ADJUSTED_QC (N_PROF, N_LEVELS) object '1' '1' '1' '1' ... TEMP_ADJUSTED_ERROR (N_PROF, N_LEVELS) float64 nan nan nan nan ... PSAL (N_PROF, N_LEVELS) float64 34.45 34.45 ... PSAL_QC (N_PROF, N_LEVELS) object '1' '1' '1' '1' ... PSAL_ADJUSTED (N_PROF, N_LEVELS) float64 34.45 34.45 ... PSAL_ADJUSTED_QC (N_PROF, N_LEVELS) object '1' '1' '1' '1' ... PSAL_ADJUSTED_ERROR (N_PROF, N_LEVELS) float64 nan nan nan nan ... PARAMETER (N_PROF, N_CALIB, N_PARAM) object 'PRES ' ... SCIENTIFIC_CALIB_EQUATION (N_PROF, N_CALIB, N_PARAM) object 'PRES_ADJUSTED = PRES - surface_pressure ' ... SCIENTIFIC_CALIB_COEFFICIENT (N_PROF, N_CALIB, N_PARAM) object 'surface_pressure=0.27 dbar ' ... SCIENTIFIC_CALIB_COMMENT (N_PROF, N_CALIB, N_PARAM) object 'Pressure adjusted at real time based on most recent valid surface pressure ' ... SCIENTIFIC_CALIB_DATE (N_PROF, N_CALIB, N_PARAM) object '20150514141619' ... HISTORY_INSTITUTION (N_HISTORY, N_PROF) object HISTORY_STEP (N_HISTORY, N_PROF) object HISTORY_SOFTWARE (N_HISTORY, N_PROF) object HISTORY_SOFTWARE_RELEASE (N_HISTORY, N_PROF) object HISTORY_REFERENCE (N_HISTORY, N_PROF) object HISTORY_DATE (N_HISTORY, N_PROF) object HISTORY_ACTION (N_HISTORY, N_PROF) object HISTORY_PARAMETER (N_HISTORY, N_PROF) object HISTORY_START_PRES (N_HISTORY, N_PROF) float64 HISTORY_STOP_PRES (N_HISTORY, N_PROF) float64 HISTORY_PREVIOUS_VALUE (N_HISTORY, N_PROF) float64 HISTORY_QCTEST (N_HISTORY, N_PROF) object Attributes: title: Argo float vertical profile institution: Coriolis GDAC source: Argo float history: 2016-01-27T15:00:22Z creation references: http://www.argodatamgt.org/Documentation user_manual_version: 3.1 Conventions: Argo-3.1 CF-1.6 featureType: trajectoryProfile

Output of xr.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 2.7.12.final.0 python-bits: 64 OS: Darwin OS-release: 16.7.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: None.None xarray: 0.10.0rc1 pandas: 0.21.0 numpy: 1.11.3 scipy: 0.18.1 netCDF4: 1.3.1 h5netcdf: 0.3.1 Nio: None bottleneck: 1.2.0 cyordereddict: 1.0.0 dask: 0.16.0 matplotlib: 1.5.3 cartopy: 0.15.1 seaborn: 0.7.1 setuptools: 36.5.0 pip: 9.0.1 conda: None pytest: None IPython: 5.2.2 sphinx: 1.5.2
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1732/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
268725471 MDU6SXNzdWUyNjg3MjU0NzE= 1662 Decoding time according to CF conventions raises error if a NaN is found gmaze 1956032 closed 0     4 2017-10-26T11:33:44Z 2017-11-21T14:38:41Z 2017-11-21T14:38:41Z CONTRIBUTOR      

Working with Argo data, I have difficulties decoding time-related variables: More specifically, it may happens that a variable being a date contains FillValue that are set to NaN at the opening of the netcdf file. That makes the decoding to raise an error.

Sure I can open the netcdf file with the decode_times = False option but it's not an issue of being able or not to decode the data, it seems to me to be about how to handle FillValue in a time axis.

I understand that with most of gridded datasets, the time axis/dimension/coordinate is full and does not contains missing values, that may be explaining why nobody have reported this before.

Here is a simple way to reproduce the error:

``` attrs = {'units': 'days since 1950-01-01 00:00:00 UTC'} # Classic Argo data Julian Day units

OK !

jd = [24658.46875, 24658.46366898, 24658.47256944] # Sample of Julian date from Argo data ds = xr.Dataset({'time': ('time', jd, attrs)}) print xr.decode_cf(ds)

<xarray.Dataset> Dimensions: (time: 3) Coordinates: * time (time) datetime64[ns] 2017-07-06T11:15:00 ... Data variables: empty But then:

Not OK with a NaN

jd = [24658.46875, 24658.46366898, 24658.47256944, np.NaN] # Another sample of Julian date from Argo data ds = xr.Dataset({'time': ('time', jd, attrs)}) print xr.decode_cf(ds)

ValueError: unable to decode time units 'days since 1950-01-01 00:00:00 UTC' with the default calendar. Try opening your dataset with decode_times=False. Full traceback: Traceback (most recent call last): File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/conventions.py", line 389, in init result = decode_cf_datetime(example_value, units, calendar) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/conventions.py", line 157, in decode_cf_datetime dates = _decode_datetime_with_netcdf4(flat_num_dates, units, calendar) File "/Users/gmaze/anaconda/envs/obidam/lib/python2.7/site-packages/xarray/conventions.py", line 99, in _decode_datetime_with_netcdf4 dates = np.asarray(nc4.num2date(num_dates, units, calendar)) File "netCDF4/_netCDF4.pyx", line 5244, in netCDF4._netCDF4.num2date (netCDF4/_netCDF4.c:64839) ValueError: cannot convert float NaN to integer ```

I would expect the decoding to work like in the first case and to simply preserve NaNs where they are.

Any ideas or suggestions ? Thanks

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1662/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 23.756ms · About: xarray-datasette