issues
4 rows where user = 193170 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1517330438 | I_kwDOAMm_X85acKAG | 7408 | Question: Feature request: test isolation and storage engine cache | shaunc 193170 | open | 0 | 4 | 2023-01-03T12:32:40Z | 2023-01-03T19:24:15Z | NONE | Is your feature request related to a problem?We have several tests that write and/or read test datasets using a common name, using open_zarr and to_zarr. Run individually, they work. However, when (e.g.) writing twice, we have errors as the zarr storage is trying to check to see which variables we may have updated, when in fact it is a new dataset. Describe the solution you'd likeWe would like a method to ensure there is no cached state between tests. Describe alternatives you've consideredIf there is an undocumented way to clear cached state, would be grateful for a pointer (and suggest inclusion in the documentation). Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7408/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1174427142 | I_kwDOAMm_X85GAFYG | 6383 | `Dataset.to_zarr` compute=False should allow access to awaitable | shaunc 193170 | closed | 0 | 5 | 2022-03-20T03:12:29Z | 2022-03-21T00:47:45Z | 2022-03-20T03:42:01Z | NONE | What happened?I have xarray, zarr installed, but not dask, and am trying to call to_zarr in an async routine. I am looking for something I can However, not using Dask. Is there some way to get an awaitable from this object without a dask client? What did you expect to happen?I should get something back I can await in my async routine. Minimal Complete Verifiable Example```Python import xarray as xr from asyncio import get_event_loop ds = xr.Dataset(data_vars = dict(x = ('x', [1, 2]))) deld = ds.to_zarr("bar.zarr", compute=False) loop.run_until_complete(deld. ...?) ``` Relevant log outputNo response Anything else we need to know?No response EnvironmentINSTALLED VERSIONScommit: None python: 3.8.5 (default, Sep 4 2020, 02:22:02) [Clang 10.0.0 ] python-bits: 64 OS: Darwin OS-release: 20.6.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.10.4 libnetcdf: 4.7.3 xarray: 2022.3.0 pandas: 1.4.1 numpy: 1.22.3 scipy: 1.6.2 netCDF4: 1.5.3 pydap: None h5netcdf: None h5py: None Nio: None zarr: 2.11.1 cftime: 1.5.1.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.3.2 dask: 2021.10.0 distributed: 2021.10.0 matplotlib: 3.1.3 cartopy: None seaborn: None numbagg: None fsspec: 2022.02.0 cupy: None pint: None sparse: None setuptools: 60.7.1 pip: 22.0.3 conda: 4.11.0 pytest: 7.1.1 IPython: 7.31.1 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6383/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
862110000 | MDU6SXNzdWU4NjIxMTAwMDA= | 5192 | Writing np.bool8 data array reads in as int8 | shaunc 193170 | closed | 0 | 2 | 2021-04-19T23:33:20Z | 2021-04-20T05:19:44Z | 2021-04-20T05:19:44Z | NONE | What happened: I have an dataarray with dtype What you expected to happen: The loaded data array should have dtype bool Minimal Complete Verifiable Example: I have had a hard time reducing this to a sample. The data array comes from a larger dataset which exhibits the same problem. I can copy the dataarray using copy() and it still exhibits the problem; however if I build a new data array using the constructor, the new array doesn't exhibit the problem. As far as I can tell, though, the original and the rebuilt dataarray are otherwise identical. ```python in a pdb session(Pdb) ci <xarray.DataArray 'cut_inclusive' (cut: 15)> array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]) Dimensions without coordinates: cut (Pdb) ci.to_netcdf('foo_ci.nca', engine="h5netcdf") (Pdb) csi = xr.read_dataarray('foo_ci_nca', engine="h5netcdf"); csi <xarray.DataArray 'cut_inclusive' (cut: 15)> array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int8) Dimensions without coordinates: cut (Pdb) ci2 = xr.DataArray(ci, dims=('cut', )) (Pdb) ci2.equals(ci) True (Pdb) ci2.to_netcdf('foo_ci2.nca', engine="h5netcdf") (Pdb) csi2 = xr.open_dataarray('foo_ci2.nca', engine="h5netcdf"); csi2 <xarray.DataArray 'cut_inclusive' (cut: 15)> array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]) Dimensions without coordinates: cut (Pdb) ci3 = ci.copy() (Pdb) ci3.to_netcdf('foo_ci3.nca', engine="h5netcdf") (Pdb) csi3 = xr.open_dataarray('foo_ci3.nca', engine="h5netcdf"); csi3 <xarray.DataArray 'cut_inclusive' (cut: 15)> array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int8) Dimensions without coordinates: cut ``` Anything else we need to know?: I am at a loss how to investigate why Environment: Output of <tt>xr.show_versions()</tt>xr.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.8.5 (default, Sep 4 2020, 07:30:14) [GCC 7.3.0] python-bits: 64 OS: Linux OS-release: 5.8.0-48-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.12.0 libnetcdf: None xarray: 0.17.0 pandas: 1.2.4 numpy: 1.20.2 scipy: 1.6.2 netCDF4: None pydap: None h5netcdf: 0.10.0 h5py: 3.2.1 Nio: None zarr: None cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2021.04.0 distributed: 2021.04.0 matplotlib: 3.4.1 cartopy: None seaborn: None numbagg: None pint: None setuptools: 51.0.0 pip: 20.3.1 conda: None pytest: 6.2.3 IPython: 7.22.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5192/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
758165023 | MDU6SXNzdWU3NTgxNjUwMjM= | 4658 | drop_sel indices in dimension that doesn't have coordinates? | shaunc 193170 | closed | 0 | 3 | 2020-12-07T05:17:36Z | 2021-01-18T23:59:09Z | 2021-01-18T23:59:09Z | NONE | Is your feature request related to a problem? Please describe. I am trying to drop particular indices from a dimension that doesn't have coordinates. Following: drop_sel() documentation,
but leaving out the coordinate labels:
Describe the solution you'd like I would think Describe alternatives you've considered As far as I know, I could either create coordinates especially to in order to drop, or rebuild a new dataset. Both are not congenial. (I'd be grateful to know if there is actually a straightforward way to do this I've overlooked. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4658/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);