issues
4 rows where user = 1882397 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
279456192 | MDU6SXNzdWUyNzk0NTYxOTI= | 1761 | Importing xarray fails if old version of bottleneck is installed | aseyboldt 1882397 | closed | 0 | 5 | 2017-12-05T17:10:25Z | 2020-02-09T21:39:48Z | 2020-02-09T21:39:48Z | NONE | Importing version 0.11 of xarray fails if version 1.0.0 of Bottleneck is installed. Bottleneck seems to be an optional dependency of xarray. During runtime xarray replaces functions by their bottleneck versions if that is installed, but it does not check if the version of bottleneck that is installed is new enough to provide that function: The
I saw this on python2.7, but I don't think that should matter... |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1761/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
372006204 | MDU6SXNzdWUzNzIwMDYyMDQ= | 2496 | Incorrect conversion from sliced pd.MultiIndex | aseyboldt 1882397 | closed | 0 | 2 | 2018-10-19T15:25:38Z | 2019-02-19T09:42:52Z | 2019-02-19T09:42:51Z | NONE | If we convert a pandas dataframe with a multiindex, slice it to remove some entries from the index, a converted DataArray still contains the removed items in the coordinates (although the values are NaN). ```python We create an example dataframeidx = pd.MultiIndex.from_product([list('abc'), list('xyz')])
df = pd.DataFrame(data={'col': np.random.randn(len(idx))}, index=idx)
df.columns.name = 'cols'
df.index.names = ['idx1', 'idx2']
df2 = df.loc[['a', 'b']]
df2 does not contain
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2496/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
355264812 | MDU6SXNzdWUzNTUyNjQ4MTI= | 2389 | Large pickle overhead in ds.to_netcdf() involving dask.delayed functions | aseyboldt 1882397 | closed | 0 | 11 | 2018-08-29T17:43:28Z | 2019-01-13T21:17:12Z | 2019-01-13T21:17:12Z | NONE | If we write a dask array that doesn't involve
``` 123410 function calls (104395 primitive calls) in 13.720 seconds Ordered by: internal time List reduced from 203 to 10 due to restriction <10> ncalls tottime percall cumtime percall filename:lineno(function) 8 10.032 1.254 10.032 1.254 {method 'acquire' of '_thread.lock' objects} 1001 2.939 0.003 2.950 0.003 {built-in method _pickle.dumps} 1001 0.614 0.001 3.569 0.004 pickle.py:30(dumps) 6504/1002 0.012 0.000 0.021 0.000 utils.py:803(convert) 11507/1002 0.010 0.000 0.019 0.000 utils_comm.py:144(unpack_remotedata) 6013 0.009 0.000 0.009 0.000 utils.py:767(tokey) 3002/1002 0.008 0.000 0.017 0.000 utils_comm.py:181(<listcomp>) 11512 0.007 0.000 0.008 0.000 core.py:26(istask) 1002 0.006 0.000 3.589 0.004 worker.py:788(dumps_task) 1 0.005 0.005 0.007 0.007 core.py:273(<dictcomp>) ``` But if we use results from vals = da.stack([da.from_delayed(make_data(), (), np.float64) for _ in range(500)]) ds = xr.Dataset({'vals': (['a'], vals)}) write = ds.to_netcdf('file5.nc', compute=False) %prun -stime -l10 write.compute() ``` ``` 115045243 function calls (104115443 primitive calls) in 67.240 seconds Ordered by: internal time List reduced from 292 to 10 due to restriction <10> ncalls tottime percall cumtime percall filename:lineno(function) 8120705/501 17.597 0.000 59.036 0.118 pickle.py:457(save) 2519027/501 7.581 0.000 59.032 0.118 pickle.py:723(save_tuple) 4 6.978 1.745 6.978 1.745 {method 'acquire' of '_thread.lock' objects} 3082150 5.362 0.000 8.748 0.000 pickle.py:413(memoize) 11474396 4.516 0.000 5.970 0.000 pickle.py:213(write) 8121206 4.186 0.000 5.202 0.000 pickle.py:200(commit_frame) 13747943 2.703 0.000 2.703 0.000 {method 'get' of 'dict' objects} 17057538 1.887 0.000 1.887 0.000 {built-in method builtins.id} 4568116 1.772 0.000 1.782 0.000 {built-in method _struct.pack} 2762513 1.613 0.000 2.826 0.000 pickle.py:448(get) ``` This additional pickle overhead does not happen if we compute the dataset without writing it to a file.
Output of `%prun -stime -l10 ds.compute()` without `dask.delayed`:
```
83856 function calls (73348 primitive calls) in 0.566 seconds
Ordered by: internal time
List reduced from 259 to 10 due to restriction <10>
ncalls tottime percall cumtime percall filename:lineno(function)
4 0.441 0.110 0.441 0.110 {method 'acquire' of '_thread.lock' objects}
502 0.013 0.000 0.013 0.000 {method 'send' of '_socket.socket' objects}
500 0.011 0.000 0.011 0.000 {built-in method _pickle.dumps}
1000 0.007 0.000 0.008 0.000 core.py:159(get_dependencies)
3500 0.007 0.000 0.007 0.000 utils.py:767(tokey)
3000/500 0.006 0.000 0.010 0.000 utils.py:803(convert)
500 0.005 0.000 0.019 0.000 pickle.py:30(dumps)
1 0.004 0.004 0.008 0.008 core.py:3826(concatenate3)
4500/500 0.004 0.000 0.008 0.000 utils_comm.py:144(unpack_remotedata)
1 0.004 0.004 0.017 0.017 order.py:83(order)
```
With `dask.delayed`:
```
149376 function calls (139868 primitive calls) in 1.738 seconds
Ordered by: internal time
List reduced from 264 to 10 due to restriction <10>
ncalls tottime percall cumtime percall filename:lineno(function)
4 1.568 0.392 1.568 0.392 {method 'acquire' of '_thread.lock' objects}
1 0.015 0.015 0.038 0.038 optimization.py:455(fuse)
502 0.012 0.000 0.012 0.000 {method 'send' of '_socket.socket' objects}
6500 0.010 0.000 0.010 0.000 utils.py:767(tokey)
5500/1000 0.009 0.000 0.012 0.000 utils_comm.py:144(unpack_remotedata)
2500 0.008 0.000 0.009 0.000 core.py:159(get_dependencies)
500 0.007 0.000 0.009 0.000 client.py:142(__init__)
1000 0.005 0.000 0.008 0.000 core.py:280(subs)
2000/1000 0.005 0.000 0.008 0.000 utils.py:803(convert)
1 0.004 0.004 0.022 0.022 order.py:83(order)
```
I am using Software versions
```
INSTALLED VERSIONS
------------------
commit: None
python: 3.6.5.final.0
python-bits: 64
OS: Darwin
OS-release: 17.7.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: en_GB.UTF-8
LANG: None
LOCALE: en_GB.UTF-8
xarray: 0.10.8
pandas: 0.23.4
numpy: 1.15.1
scipy: 1.1.0
netCDF4: 1.4.0
h5netcdf: 0.6.2
h5py: 2.8.0
Nio: None
zarr: None
bottleneck: 1.2.1
cyordereddict: None
dask: 0.18.2
distributed: 1.22.1
matplotlib: 2.2.2
cartopy: None
seaborn: 0.9.0
setuptools: 40.2.0
pip: 18.0
conda: 4.5.11
pytest: 3.7.3
IPython: 6.5.0
sphinx: 1.7.7
```
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2389/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
342426261 | MDU6SXNzdWUzNDI0MjYyNjE= | 2299 | Confusing behaviour with MultiIndex | aseyboldt 1882397 | closed | 0 | fujiisoup 6815844 | 1 | 2018-07-18T17:41:12Z | 2018-08-13T22:16:31Z | 2018-08-13T22:16:31Z | NONE |
```python a = pd.DataFrame({'a': [1, 2], 'b': [3, 4]}).unstack('a') a.index.names = ['dim0', 'dim1'] a.index.name = 'stacked_dim' b = xr.Dataset(coords={'dim0': ['a', 'b'], 'dim1': [0, 1]}) b = b.stack(dim_stacked=['dim0', 'dim1']) assert(len(b.dim0) == 4) This should raise an errors because the length is != 4b['c'] = (('dim0',), [10, 11])
b
Similar cases of coordinates that aren't used do raise an error:
Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2299/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);