home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

4 rows where user = 18679148 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)

state 2

  • closed 3
  • open 1

type 1

  • issue 4

repo 1

  • xarray 4
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
949649935 MDU6SXNzdWU5NDk2NDk5MzU= 5625 Add 'construct' method to Coarsen objects ACHMartin 18679148 closed 0     1 2021-07-21T12:20:39Z 2021-07-21T14:25:11Z 2021-07-21T14:25:11Z NONE      

Is your feature request related to a problem? Please describe. A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]

Similarly to the 'construct' method for Rolling objects, I think it will make sense to have the same for Coarsen objects.

My use will be for my da: da(lon, lat, time) of dimension (2000, 1600, 240) I wish to coarsen the data by a factor 4 in lon and lat (Lon and Lat), but wish to keep the data in a new dimension, it would be: da(Lon, Lat, time, samples) of dim (500, 400, 240, 16)

my aim is to do da.median(dim=['time','samples'])

Describe the solution you'd like A clear and concise description of what you want to happen.

da.coarsen(lon=4, lat=4, , boundary="trim").construct('samples')

Describe alternatives you've considered A clear and concise description of any alternative solutions or features you've considered.

I am using Rolling objects, but it increases the size of the matrix.

Many thanks for your work

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5625/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
700915153 MDU6SXNzdWU3MDA5MTUxNTM= 4421 circular + linear stats on a same dataset ACHMartin 18679148 open 0     1 2020-09-14T09:03:24Z 2020-11-01T13:44:26Z   NONE      

Is your feature request related to a problem? Please describe. I would like to calculate the mean on all variables of my dataset which is easy and straightforward with xarray, for example: ds.mean(dim='time) The issue is I have some circular quantities in this dataset (for example wind direction). I can use script.stats.circmean/std, but I have to discriminate myself when I have to use one or the other function.

Describe the solution you'd like I would like to add a parameter in the description of my variable mentioning it is circular. Every time I apply a function on the full dataset, it uses the circular equivalent if it exists.

There is perhaps some tricks to do it, but I didn't find any so far. Thank you.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4421/reactions",
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue
663649344 MDU6SXNzdWU2NjM2NDkzNDQ= 4246 combine_by_coords; proposition for a new option for combine_attrs = 'dim' ACHMartin 18679148 closed 0     2 2020-07-22T10:22:32Z 2020-07-23T18:46:51Z 2020-07-23T18:46:51Z NONE      

I am combining a list of snapshots having all the same geometry but with different time. Some time information appears in the attributes. I can 'drop' it, but I would prefer keep it and add it using a define dimension (in my case, in time). I believe for v0.15.1 (the default was to drop it with the default compat='no_conflicts'), I think of this because I got an error on the default combine_attrs = 'no_conflicts' on v0.16.0.

I would like an option of type combine_attrs = {dim: 'time'} or even better only combine_attrs = 'dim' and somehow it finds which dimension it should use.

Thanks

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4246/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
663769801 MDU6SXNzdWU2NjM3Njk4MDE= 4247 plot/utils get_axis cannot use subplot_kws with existing ax ACHMartin 18679148 closed 0     2 2020-07-22T13:38:04Z 2020-07-22T14:59:16Z 2020-07-22T14:59:16Z NONE      

I get the following error when I move from xarray 0.15.1 to 0.16.0 "cannot use subplot_kws with existing ax". I don't really understand why this error is raised, but as far as I use it (see below), I feel I need to use both ax and subplot_kws. Please find below a minimum case: ```python import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as plt import cartopy.crs as ccrs

x = np.arange(0,3) y = np.arange(0,5) z = np.arange(0,2) xx, yy, zz = np.meshgrid(x, y, z)

lat = 40 + xx0.1 + yy1 lon = 5 + xx1 + yy0.1 + zz5 data3 = xx + yy + 5zz data4 = np.stack([data3, data32, data34, data3*8])

ds = xr.Dataset({'data': (['time','x','y','z'], data4)}, coords={'time': pd.date_range("2020-01-01", periods=4), 'lon': (['x','y','z'], lon), 'lat': (['x','y','z'], lat)} ) ```

So I have lon/lat maps with two swaths (z-dimension). I want to plot both swaths on the same map, and as function of time ```python plt.figure() for ss in z: ds.data.isel(time=0, z=ss).plot(x='lon', y='lat', add_colorbar=False, vmin=0, vmax=12)

plt.figure() g = ds.data.isel(z=0).plot(x='lon', y='lat', col='time') for cc, ax in enumerate(g.axes.flat): for ss in z: ds.data.isel(time=cc, z=ss).plot(x='lon', y='lat', add_colorbar=False, vmin=0, vmax=50, ax=ax) ```

All is relatively fine, the issue is when I want to project it on a map using Cartopy: Still fine with only one map: python plt.figure() for ss in z: ds.data.isel(time=0, z=ss).plot(x='lon', y='lat', add_colorbar=False, vmin=0, vmax=12, transform=ccrs.PlateCarree(), subplot_kws={'projection': ccrs.Mercator()})

but the "ValueError: cannot use subplot_kws with existing ax" is raised when I try with the facets plot: python plt.figure() g = ds.data.isel(z=0).plot(x='lon', y='lat', col='time', transform=ccrs.PlateCarree(), subplot_kws={'projection': ccrs.Mercator()}) for cc, ax in enumerate(g.axes.flat): for ss in z: ds.data.isel(time=cc, z=ss).plot(x='lon', y='lat', add_colorbar=False, vmin=0, vmax=50, ax=ax, transform=ccrs.PlateCarree(), subplot_kws={'projection': ccrs.Mercator()})

On a side note, I don't understand why I am loosing one pixel per row and column using the cartopy projection.

Output of <tt>xr.show_versions()</tt> INSTALLED VERSIONS ------------------ commit: None python: 3.7.6 (default, Jan 8 2020, 13:42:34) [Clang 4.0.1 (tags/RELEASE_401/final)] python-bits: 64 OS: Darwin OS-release: 19.5.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: en_GB.UTF-8 libhdf5: 1.10.4 libnetcdf: 4.6.1 xarray: 0.16.0 pandas: 1.0.1 numpy: 1.18.1 scipy: 1.4.1 netCDF4: 1.4.2 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.0.4.2 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2.10.1 distributed: 2.10.0 matplotlib: 3.1.3 cartopy: 0.17.0 seaborn: None numbagg: None pint: None setuptools: 45.2.0.post20200210 pip: 20.0.2 conda: None pytest: None IPython: 7.12.0 sphinx: None
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4247/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 20.73ms · About: xarray-datasette