home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

1 row where user = 18488 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

type 1

  • issue 1

state 1

  • open 1

repo 1

  • xarray 1
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
771382653 MDU6SXNzdWU3NzEzODI2NTM= 4714 Allow sel's method and tolerance to vary per-dimension batterseapower 18488 open 0     6 2020-12-19T13:37:36Z 2020-12-19T16:58:20Z   NONE      

Imagine some data like this:

python sensor_data = xr.DataArray(np.arange(6).reshape((3, 2)), coords=[ ('time', [0, 2, 3]), ('sensor', ['A', 'C']), ])

Let's say we now want to sample these sensors at some arbitrary points. We can use vectorized indexing do this: python sensor_data.sel({ 'sensor': xr.DataArray(['A', 'A', 'A', 'B', 'C'], dims=['sample']), 'time': xr.DataArray([0, 1, 2, 0, 0], dims=['sample']) })

This fails because we are sampling one of our sensors at time 1, where we don't have any observations. We can add method='ffill' to fix this: ```python sensor_data.sel({ 'sensor': xr.DataArray(['A', 'A', 'A', 'B', 'C'], dims=['sample']), 'time': xr.DataArray([0, 1, 2, 0, 0], dims=['sample']) }, method='ffill')

array([0, 0, 2, 0, 1])

```

The problem is that the bogus sensor "B" is now getting a value ffilled from sensor "A"'s time 0 observation, which doesn't make a lot of sense because sensor names are arbitary. What we really want to do is apply the ffill only down the "time" array, so the sel call sitll fails if a sensor name is unknown but we can still benefit from ffilling in places where it makes sense.

So, it would be nice if we could supply a per-dimension method (or tolerance) like this:

python sensor_data.sel({ 'sensor': xr.DataArray(['A', 'A', 'A', 'B', 'C'], dims=['sample']), 'time': xr.DataArray([0, 1, 2, 0, 0], dims=['sample']) }, method={'time': 'ffill'})

From an implementation point of view, this looks like an easy addition in indexing.remap_label_indexers: https://github.com/pydata/xarray/blob/235b2e5bcec253ca6a85762323121d28c3b06038/xarray/core/indexing.py#L243

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4714/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 3282.752ms · About: xarray-datasette