issues
2 rows where user = 15956441 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
330918967 | MDU6SXNzdWUzMzA5MTg5Njc= | 2223 | DataArray.interp() : poor performance | e-roux 15956441 | closed | 0 | 6 | 2018-06-09T21:01:30Z | 2020-05-25T20:02:37Z | 2020-05-25T20:02:37Z | CONTRIBUTOR | Code SampleHello, I performed a quick comparison of the newly introduced method ìnterp()` with an adapter (draft) to the sdf (scientific data format) library: https://gist.github.com/gwin-zegal/b955c3ef63f5ad51eec6329dd2e620be#file-array_sdf_interp-py Code for a micro comparison (2D array) in python (include the above gist first): ```python arr = xr.DataArray(np.sort(np.sort(np.random.RandomState(123).rand(30,4), axis=0), axis=1), coords=[('tension', np.arange(10, 40)), ('resistance', np.linspace(100, 500, 4))]) res = {'xarray': [], 'c_sdf' : []} x = np.logspace(1, 4, num=10, dtype=np.int16) for size in x: new_tension = arr.tension[0].data + np.random.random_sample(size=size) * (arr.tension[-1].data - arr.tension[0].data) new_resistance = arr.resistance[0].data + np.random.random_sample(size=size) * (arr.resistance[-1].data - arr.resistance[0].data)
``` Problem descriptionThe time spent for The C-SDF code is slow (a copy of the array is performed and algorithms not so optimized), but xarray implementation is not usable in daily life on my machine! {'xarray': [<TimeitResult : 6.46 ms ± 223 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)>, <TimeitResult : 6.46 ms ± 88.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)>, <TimeitResult : 6.99 ms ± 141 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)>, <TimeitResult : 8.91 ms ± 52 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)>, <TimeitResult : 19.8 ms ± 183 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)>, <TimeitResult : 112 ms ± 638 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)>, <TimeitResult : 584 ms ± 19.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)>, <TimeitResult : 2.63 s ± 43.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)>, <TimeitResult : 15.5 s ± 147 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)>, <TimeitResult : 2min 23s ± 18.7 s per loop (mean ± std. dev. of 7 runs, 1 loop each)>], 'c_sdf': [<TimeitResult : 1.08 ms ± 7.96 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)>, <TimeitResult : 1.09 ms ± 7.91 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)>, <TimeitResult : 1.1 ms ± 12.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)>, <TimeitResult : 1.13 ms ± 9.95 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)>, <TimeitResult : 1.19 ms ± 7.76 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)>, <TimeitResult : 1.32 ms ± 9.47 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)>, <TimeitResult : 1.59 ms ± 10.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)>, <TimeitResult : 2.19 ms ± 31.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)>, <TimeitResult : 3.51 ms ± 34.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)>, <TimeitResult : 9.27 ms ± 307 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)>]} Performance issue on my machine or is it confirmed by others? Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2223/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
549151234 | MDExOlB1bGxSZXF1ZXN0MzYyMjk2NTA3 | 3692 | Typo on DataSet/DataArray.to_dict documentation | e-roux 15956441 | closed | 0 | 1 | 2020-01-13T20:04:14Z | 2020-01-13T20:32:39Z | 2020-01-13T20:32:18Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/3692 | { "url": "https://api.github.com/repos/pydata/xarray/issues/3692/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);