issues
21 rows where user = 15331990 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2115555965 | I_kwDOAMm_X85-GNJ9 | 8695 | Return a 3D object alongside 1D object in apply_ufunc | ahuang11 15331990 | closed | 0 | 7 | 2024-02-02T18:47:14Z | 2024-04-28T19:59:31Z | 2024-04-28T19:59:31Z | CONTRIBUTOR | Is your feature request related to a problem?Currently, I have something similar to this, where the Since Any ideas on how I can modify this to make it more efficient? ```python import xarray as xr import numpy as np air = xr.tutorial.open_dataset("air_temperature")["air"] input_lat = np.arange(20, 45) def interp1d_np(data, base_lat, input_lat): new_lat = input_lat + 0.25 return np.interp(new_lat, base_lat, data), new_lat ds, new_lat = xr.apply_ufunc( interp1d_np, # first the function air, air.lat, # as above input_lat, # as above input_core_dims=[["lat"], ["lat"], ["lat"]], # list with one entry per arg output_core_dims=[["lat"], ["lat"]], # returned data has one dimension exclude_dims=set(("lat",)), # dimensions allowed to change size. Must be a set! vectorize=True, # loop over non-core dims ) new_lat = new_lat.isel(lon=0, time=0).values ds["lat"] = new_lat ``` Describe the solution you'd likeEither be able to automatically assign the new_lat to the returned xarray object, or allow a 1D dataset to be returned Describe alternatives you've consideredNo response Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8695/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
746929580 | MDU6SXNzdWU3NDY5Mjk1ODA= | 4596 | Working with Multidimensional Coordinates - Plotting PlateCarree projection looks strange | ahuang11 15331990 | closed | 0 | 5 | 2020-11-19T21:15:25Z | 2024-02-28T19:09:33Z | 2024-02-28T19:09:33Z | CONTRIBUTOR | The pixels seem stretched; https://xarray.pydata.org/en/stable/examples/multidimensional-coords.html |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4596/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
415774106 | MDU6SXNzdWU0MTU3NzQxMDY= | 2795 | Add "unique()" method, mimicking pandas | ahuang11 15331990 | open | 0 | 6 | 2019-02-28T18:58:15Z | 2024-01-08T17:31:30Z | CONTRIBUTOR | Would it be good to add a unique() method that mimics pandas?
Output:
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2795/reactions", "total_count": 10, "+1": 10, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1052753606 | I_kwDOAMm_X84-v77G | 5985 | Formatting data array as strings? | ahuang11 15331990 | open | 0 | 7 | 2021-11-13T19:29:02Z | 2023-03-17T13:10:06Z | CONTRIBUTOR | https://github.com/pydata/xarray/discussions/5865#discussioncomment-1636647 I wonder if it's possible to implement a built-in function like:
To wrap: ``` import xarray as xr da = xr.DataArray([5., 6., 7.]) das = xr.DataArray("%.2f") das.str % da <xarray.DataArray (dim_0: 3)> array(['5.00', '6.00', '7.00'], dtype='<U4') Dimensions without coordinates: dim_0 ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5985/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
843961481 | MDExOlB1bGxSZXF1ZXN0NjAzMjc2NjE0 | 5091 | Add unique method | ahuang11 15331990 | closed | 0 | 5 | 2021-03-30T01:09:09Z | 2022-08-16T23:35:14Z | 2022-08-16T23:35:14Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5091 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5091/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
383945783 | MDU6SXNzdWUzODM5NDU3ODM= | 2568 | Xarray equivalent of np.place or df.map(mapping)? | ahuang11 15331990 | closed | 0 | 11 | 2018-11-24T00:33:11Z | 2022-04-18T15:51:57Z | 2022-04-18T15:51:57Z | CONTRIBUTOR | ```python numpy versionx = np.array([0, 1]) np.place(x, x == 0, 1) pandas versionpd.Series([0, 1]).map({0: 1, 1: 1}) current workaroundds = xr.Dataset({'test': [0, 1]}) np.place(ds['test'].values, ds['test'].values == 0, 1) ``` Problem descriptionIs there a built in method to map values like 0 to 1? Expected Outputreturns |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2568/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
816540158 | MDU6SXNzdWU4MTY1NDAxNTg= | 4958 | to_zarr mode='a-', append_dim; if dim value exists raise error | ahuang11 15331990 | open | 0 | 1 | 2021-02-25T15:26:02Z | 2022-04-09T15:19:28Z | CONTRIBUTOR | If I have a ds with time, lat, lon and I call the same command twice:
Kind of like: ```python import numpy as np import xarray as xr ds = xr.tutorial.open_dataset('air_temperature') ds.to_zarr('test_air.zarr', append_dim='time') ds_tmp = xr.open_mfdataset('test_air.zarr', engine='zarr') overlap = np.intersect1d(ds['time'], ds_tmp['time']) if len(overlap) > 1: raise ValueError(f'Found overlapping values in datasets {overlap}') ds.to_zarr('test_air.zarr', append_dim='time') ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4958/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
873519048 | MDExOlB1bGxSZXF1ZXN0NjI4MzIwMDkx | 5239 | Add drop_duplicates for dims | ahuang11 15331990 | closed | 0 | 10 | 2021-05-01T03:23:26Z | 2021-05-15T17:46:06Z | 2021-05-15T17:46:06Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5239 | Ruined https://github.com/pydata/xarray/pull/5089 with reverting so remaking the PR for just dims
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5239/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
842940980 | MDExOlB1bGxSZXF1ZXN0NjAyMzk1MTE3 | 5089 | Add drop duplicates | ahuang11 15331990 | closed | 0 | 20 | 2021-03-29T03:51:07Z | 2021-05-01T03:25:48Z | 2021-05-01T03:25:47Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5089 | Semi related to https://github.com/pydata/xarray/issues/2795, but not really; still want a separate unique function
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5089/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
809708107 | MDU6SXNzdWU4MDk3MDgxMDc= | 4917 | Comparing against datetime.datetime and pd.Timestamp | ahuang11 15331990 | open | 0 | 1 | 2021-02-16T22:54:39Z | 2021-03-25T22:18:08Z | CONTRIBUTOR | Not sure if exactly bug and what performance implications there are but it'd be more user friendly if supported: 1.) comparing against datetime
2.) pd.Timestamp
This works though when converting to np.datetime64
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4917/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
744274576 | MDU6SXNzdWU3NDQyNzQ1NzY= | 4588 | drop keyword in ds.rolling(time=7, drop=True).mean()? | ahuang11 15331990 | closed | 0 | 4 | 2020-11-16T23:10:35Z | 2021-02-18T22:17:07Z | 2021-02-18T22:17:07Z | CONTRIBUTOR | Should rolling have a drop keyword, similar to squeeze(drop=True)?
Equivalent:
Actual implementation will require considering min_period / center=True too |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4588/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
756415834 | MDU6SXNzdWU3NTY0MTU4MzQ= | 4647 | DataArray transpose inconsistent with Dataset Ellipsis usage | ahuang11 15331990 | closed | 0 | 7 | 2020-12-03T17:52:16Z | 2021-01-05T23:45:03Z | 2021-01-05T23:45:03Z | CONTRIBUTOR | This works:
This doesn't (subset air):
The error message is a bit inaccurate too since I do have Ellipsis included; might be related to two calls of: ValueError: ('not_existing_dim', 'lat', 'lon', 'time') must be a permuted list of ('time', 'lat', 'lon'), unless Traceback ... ValueError Traceback (most recent call last) <ipython-input-5-793dfc1507ea> in <module> 2 ds = xr.tutorial.open_dataset('air_temperature') 3 ds.transpose('not_existing_dim', 'lat', 'lon', 'time', ...) ----> 4 ds['air'].transpose('not_existing_dim', 'lat', 'lon', 'time', ...) ~/anaconda3/envs/py3/lib/python3.7/site-packages/xarray/core/dataarray.py in transpose(self, transpose_coords, dims) 2035 if dims: 2036 dims = tuple(utils.infix_dims(dims, self.dims)) -> 2037 variable = self.variable.transpose(dims) 2038 if transpose_coords: 2039 coords: Dict[Hashable, Variable] = {} ~/anaconda3/envs/py3/lib/python3.7/site-packages/xarray/core/variable.py in transpose(self, *dims) 1388 if len(dims) == 0: 1389 dims = self.dims[::-1] -> 1390 dims = tuple(infix_dims(dims, self.dims)) 1391 axes = self.get_axis_num(dims) 1392 if len(dims) < 2 or dims == self.dims: ~/anaconda3/envs/py3/lib/python3.7/site-packages/xarray/core/utils.py in infix_dims(dims_supplied, dims_all)
724 if set(dims_supplied) ^ set(dims_all):
725 raise ValueError(
--> 726 f"{dims_supplied} must be a permuted list of {dims_all}, unless |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4647/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
743165216 | MDU6SXNzdWU3NDMxNjUyMTY= | 4587 | ffill with datetime64 errors | ahuang11 15331990 | open | 0 | 1 | 2020-11-15T02:38:39Z | 2020-11-15T14:23:19Z | CONTRIBUTOR |
``` ~/anaconda3/envs/py3/lib/python3.7/site-packages/xarray/core/computation.py in apply_variable_ufunc(func, signature, exclude_dims, dask, output_dtypes, vectorize, keep_attrs, dask_gufunc_kwargs, args) 698 ) 699 --> 700 result_data = func(input_data) 701 702 if signature.num_outputs == 1: ~/anaconda3/envs/py3/lib/python3.7/site-packages/bottleneck/slow/nonreduce_axis.py in push(a, n, axis) 49 elif ndim == 0: 50 return y ---> 51 fidx = ~np.isnan(y) 52 recent = np.empty(y.shape[:-1]) 53 count = np.empty(y.shape[:-1]) TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe'' ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4587/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
653554923 | MDU6SXNzdWU2NTM1NTQ5MjM= | 4210 | Use weighted with coarsen? | ahuang11 15331990 | closed | 0 | 1 | 2020-07-08T19:53:28Z | 2020-07-08T20:01:35Z | 2020-07-08T20:01:35Z | CONTRIBUTOR | I want to do something similar as xesmf's weighted regridding, but without the need to install esmpy which has a lot of dependencies. Are variations of the following possible?
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4210/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
621202499 | MDU6SXNzdWU2MjEyMDI0OTk= | 4083 | Better default formatting of timedelta with plot method | ahuang11 15331990 | closed | 0 | 1 | 2020-05-19T18:43:11Z | 2020-05-19T19:39:35Z | 2020-05-19T19:39:34Z | CONTRIBUTOR | Currently, it shows nanoseconds.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4083/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
619089111 | MDU6SXNzdWU2MTkwODkxMTE= | 4066 | Feature request: ds.interp_like() keyword to exclude certain dimensions | ahuang11 15331990 | closed | 0 | 2 | 2020-05-15T16:15:59Z | 2020-05-15T17:28:09Z | 2020-05-15T17:28:09Z | CONTRIBUTOR | If I have two datasets and I want to match the lat/lon, but not the time, I would have to do
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4066/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
522402552 | MDU6SXNzdWU1MjI0MDI1NTI= | 3522 | CFTimeIndex changes to normal Index after renaming | ahuang11 15331990 | closed | 0 | 3 | 2019-11-13T18:42:02Z | 2019-11-15T19:49:30Z | 2019-11-15T19:49:30Z | CONTRIBUTOR | MCVE Code SampleSince this code crashes for me and I don't have xarray master, I can't create a tested MCVE Code sample at the moment, but I think something along the lines of:
Expected Output
Problem DescriptionCFTimeIndex changes to normal Index after renaming Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3522/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
522397677 | MDU6SXNzdWU1MjIzOTc2Nzc= | 3521 | cftime_range example doesn't work | ahuang11 15331990 | closed | 0 | 1 | 2019-11-13T18:31:26Z | 2019-11-13T18:34:43Z | 2019-11-13T18:34:43Z | CONTRIBUTOR | MCVE Code Sample
Expected OutputThe output from the example Problem Description```ValueError Traceback (most recent call last) <ipython-input-3-4ff834de4bd2> in <module> 1 import xarray as xr ----> 2 xr.cftime_range(start='2000', periods=6, freq='2MS', calendar='noleap') ~/anaconda3/envs/py3/lib/python3.7/site-packages/xarray/coding/cftime_offsets.py in cftime_range(start, end, periods, freq, normalize, name, closed, calendar) 961 962 if start is not None: --> 963 start = to_cftime_datetime(start, calendar) 964 start = _maybe_normalize_date(start, normalize) 965 if end is not None: ~/anaconda3/envs/py3/lib/python3.7/site-packages/xarray/coding/cftime_offsets.py in to_cftime_datetime(date_str_or_date, calendar) 677 "a calendar type must be provided" 678 ) --> 679 date, _ = _parse_iso8601_with_reso(get_date_type(calendar), date_str_or_date) 680 return date 681 elif isinstance(date_str_or_date, cftime.datetime): ~/anaconda3/envs/py3/lib/python3.7/site-packages/xarray/coding/cftimeindex.py in _parse_iso8601_with_reso(date_type, timestr) 114 # 1.0.3.4. 115 replace["dayofwk"] = -1 --> 116 return default.replace(**replace), resolution 117 118 cftime/_cftime.pyx in cftime._cftime.datetime.replace() ValueError: Replacing the dayofyr or dayofwk of a datetime is not supported. ``` Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3521/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
447268579 | MDU6SXNzdWU0NDcyNjg1Nzk= | 2981 | Plot title using loc keyword doesn't override automated title | ahuang11 15331990 | closed | 0 | 2 | 2019-05-22T17:56:17Z | 2019-05-22T18:34:03Z | 2019-05-22T18:34:03Z | CONTRIBUTOR | ```python import xarray as xr import matplotlib.pyplot as plt ds = xr.tutorial.open_dataset('air_temperature')['air'].isel(time=0) ``` This works as expected
This doesn't
With non-default loc, the old title still shows
xarray: 0.12.1
pandas: 0.23.4
numpy: 1.15.1
scipy: 1.1.0
netCDF4: 1.4.0
pydap: None
h5netcdf: 0.6.1
h5py: 2.9.0
Nio: None
zarr: None
cftime: 1.0.0
nc_time_axis: None
PseudonetCDF: None
rasterio: 1.0.1
cfgrib: None
iris: None
bottleneck: 1.2.1
dask: 1.1.1
distributed: 1.25.3
matplotlib: 3.1.0
cartopy: 0.17.0
seaborn: 0.8.1
setuptools: 39.1.0
pip: 19.0.1
conda: 4.6.14
pytest: 3.5.1
IPython: 6.4.0
sphinx: 1.7.4
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2981/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
403350812 | MDU6SXNzdWU0MDMzNTA4MTI= | 2711 | Substituting values based on condition | ahuang11 15331990 | closed | 0 | 2 | 2019-01-25T22:03:10Z | 2019-01-26T03:22:07Z | 2019-01-26T03:22:07Z | CONTRIBUTOR | Is there a more intuitive, built-in way of substituting values based on the conditions without having to flip every logic operator? ``` import xarray as xr ds = xr.tutorial.open_dataset('air_temperature') ds['text'] = (('time', 'lat', 'lon'), np.zeros_like(ds['air'].values).astype(str)) ds['text'] = ds['text'].where(ds['air'] < 273, 'above freezing') ds['text'] = ds['text'].where(ds['air'] > 273, 'below freezing') ds['text'] = ds['text'].where(ds['air'] != 273, 'freezing') ds.hvplot('lon', 'lat', z='air', hover_cols=['text']).opts(color_levels=[200, 273, 300]) ``` The numpy equivalent (also seems faster by 2x) ``` above_freezing = np.where(ds['air'].values > 273) ds['text'].data[above_freezing] = 'above_freezing' below_freezing = np.where(ds['air'].values < 273) ds['text'].data[below_freezing] = 'below_freezing' freezing = np.where(ds['air'].values == 273) ds['text'].data[freezing] = 'freezing' ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2711/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
349378661 | MDExOlB1bGxSZXF1ZXN0MjA3NTA4ODEz | 2360 | Add option to not roll coords | ahuang11 15331990 | closed | 0 | 1 | 2018-08-10T05:14:35Z | 2018-08-15T08:11:57Z | 2018-08-15T08:11:29Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/2360 |
Will add the others stuff from the checklist soon. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2360/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);