issues
5 rows where user = 1492047 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: state_reason, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2250654663 | I_kwDOAMm_X86GJkPH | 8957 | netCDF encoding and decoding issues. | Thomas-Z 1492047 | open | 0 | 6 | 2024-04-18T13:06:49Z | 2024-04-19T13:12:04Z | CONTRIBUTOR | What happened?Reading or writing netCDF variables containing scale_factor and/or fill_value might raise the following error:
What did you expect to happen?I'm expecting it to work like it did before xarray 2024.03.0! Minimal Complete Verifiable Example```Python Example 1, decoding problem.import netCDF4 as nc import numpy as np import xarray as xr with nc.Dataset("test1.nc", mode="w") as ncds: ncds.createDimension(dimname="d") ncx = ncds.createVariable( varname="x", datatype=np.int64, dimensions=("d",), fill_value=-1, )
This will raise the errorxr.load_dataset("test1.nc") Example 2, encoding problem.import netCDF4 as nc import numpy as np import xarray as xr with nc.Dataset("test2.nc", mode="w") as ncds: ncds.createDimension(dimname="d") ncx = ncds.createVariable(varname="x", datatype=np.int8, dimensions=("d",))
Reading it does workdata = xr.load_dataset("test2.nc") Writing read data does not workdata.to_netcdf("text2x.nc") ``` MVCE confirmation
Relevant log output```Python Example 1 errorUFuncTypeError Traceback (most recent call last) Cell In[38], line 1 ----> 1 xr.load_dataset("test2.nc") File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/backends/api.py:280, in load_dataset(filename_or_obj, kwargs) 277 raise TypeError("cache has no effect in this context") 279 with open_dataset(filename_or_obj, kwargs) as ds: --> 280 return ds.load() File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/core/dataset.py:855, in Dataset.load(self, **kwargs) 853 for k, v in self.variables.items(): 854 if k not in lazy_data: --> 855 v.load() 857 return self File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/core/variable.py:961, in Variable.load(self, kwargs) 944 def load(self, kwargs): 945 """Manually trigger loading of this variable's data from disk or a 946 remote source into memory and return this variable. 947 (...) 959 dask.array.compute 960 """ --> 961 self._data = to_duck_array(self._data, **kwargs) 962 return self File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/namedarray/pycompat.py:134, in to_duck_array(data, **kwargs) 131 return loaded_data 133 if isinstance(data, ExplicitlyIndexed): --> 134 return data.get_duck_array() # type: ignore[no-untyped-call, no-any-return] 135 elif is_duck_array(data): 136 return data File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/core/indexing.py:809, in MemoryCachedArray.get_duck_array(self) 808 def get_duck_array(self): --> 809 self._ensure_cached() 810 return self.array.get_duck_array() File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/core/indexing.py:803, in MemoryCachedArray._ensure_cached(self) 802 def _ensure_cached(self): --> 803 self.array = as_indexable(self.array.get_duck_array()) File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/core/indexing.py:760, in CopyOnWriteArray.get_duck_array(self) 759 def get_duck_array(self): --> 760 return self.array.get_duck_array() File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/core/indexing.py:630, in LazilyIndexedArray.get_duck_array(self) 625 # self.array[self.key] is now a numpy array when 626 # self.array is a BackendArray subclass 627 # and self.key is BasicIndexer((slice(None, None, None),)) 628 # so we need the explicit check for ExplicitlyIndexed 629 if isinstance(array, ExplicitlyIndexed): --> 630 array = array.get_duck_array() 631 return _wrap_numpy_scalars(array) File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/coding/variables.py:81, in _ElementwiseFunctionArray.get_duck_array(self) 80 def get_duck_array(self): ---> 81 return self.func(self.array.get_duck_array()) File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/coding/variables.py:81, in _ElementwiseFunctionArray.get_duck_array(self) 80 def get_duck_array(self): ---> 81 return self.func(self.array.get_duck_array()) File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/coding/variables.py:399, in _scale_offset_decoding(data, scale_factor, add_offset, dtype) 397 data = data.astype(dtype=dtype, copy=True) 398 if scale_factor is not None: --> 399 data *= scale_factor 400 if add_offset is not None: 401 data += add_offset UFuncTypeError: Cannot cast ufunc 'multiply' output from dtype('float64') to dtype('int64') with casting rule 'same_kind' Example 2 errorUFuncTypeError Traceback (most recent call last) Cell In[42], line 1 ----> 1 data.to_netcdf("text1x.nc") File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/core/dataset.py:2298, in Dataset.to_netcdf(self, path, mode, format, group, engine, encoding, unlimited_dims, compute, invalid_netcdf) 2295 encoding = {} 2296 from xarray.backends.api import to_netcdf -> 2298 return to_netcdf( # type: ignore # mypy cannot resolve the overloads:( 2299 self, 2300 path, 2301 mode=mode, 2302 format=format, 2303 group=group, 2304 engine=engine, 2305 encoding=encoding, 2306 unlimited_dims=unlimited_dims, 2307 compute=compute, 2308 multifile=False, 2309 invalid_netcdf=invalid_netcdf, 2310 ) File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/backends/api.py:1339, in to_netcdf(dataset, path_or_file, mode, format, group, engine, encoding, unlimited_dims, compute, multifile, invalid_netcdf) 1334 # TODO: figure out how to refactor this logic (here and in save_mfdataset) 1335 # to avoid this mess of conditionals 1336 try: 1337 # TODO: allow this work (setting up the file for writing array data) 1338 # to be parallelized with dask -> 1339 dump_to_store( 1340 dataset, store, writer, encoding=encoding, unlimited_dims=unlimited_dims 1341 ) 1342 if autoclose: 1343 store.close() File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/backends/api.py:1386, in dump_to_store(dataset, store, writer, encoder, encoding, unlimited_dims) 1383 if encoder: 1384 variables, attrs = encoder(variables, attrs) -> 1386 store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims) File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/backends/common.py:393, in AbstractWritableDataStore.store(self, variables, attributes, check_encoding_set, writer, unlimited_dims) 390 if writer is None: 391 writer = ArrayWriter() --> 393 variables, attributes = self.encode(variables, attributes) 395 self.set_attributes(attributes) 396 self.set_dimensions(variables, unlimited_dims=unlimited_dims) File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/backends/common.py:482, in WritableCFDataStore.encode(self, variables, attributes) 479 def encode(self, variables, attributes): 480 # All NetCDF files get CF encoded by default, without this attempting 481 # to write times, for example, would fail. --> 482 variables, attributes = cf_encoder(variables, attributes) 483 variables = {k: self.encode_variable(v) for k, v in variables.items()} 484 attributes = {k: self.encode_attribute(v) for k, v in attributes.items()} File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/conventions.py:795, in cf_encoder(variables, attributes) 792 # add encoding for time bounds variables if present. 793 _update_bounds_encoding(variables) --> 795 new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()} 797 # Remove attrs from bounds variables (issue #2921) 798 for var in new_vars.values(): File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/conventions.py:196, in encode_cf_variable(var, needs_copy, name) 183 ensure_not_multiindex(var, name=name) 185 for coder in [ 186 times.CFDatetimeCoder(), 187 times.CFTimedeltaCoder(), (...) 194 variables.BooleanCoder(), 195 ]: --> 196 var = coder.encode(var, name=name) 198 # TODO(kmuehlbauer): check if ensure_dtype_not_object can be moved to backends: 199 var = ensure_dtype_not_object(var, name=name) File .../conda/envs/ong312_local/lib/python3.12/site-packages/xarray/coding/variables.py:476, in CFScaleOffsetCoder.encode(self, variable, name) 474 data -= pop_to(encoding, attrs, "add_offset", name=name) 475 if "scale_factor" in encoding: --> 476 data /= pop_to(encoding, attrs, "scale_factor", name=name) 478 return Variable(dims, data, attrs, encoding, fastpath=True) UFuncTypeError: Cannot cast ufunc 'divide' output from dtype('float64') to dtype('int64') with casting rule 'same_kind' ``` Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.12.3 | packaged by conda-forge | (main, Apr 15 2024, 18:38:13) [GCC 12.3.0]
python-bits: 64
OS: Linux
OS-release: 5.15.0-92-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: fr_FR.UTF-8
LOCALE: ('fr_FR', 'UTF-8')
libhdf5: 1.14.3
libnetcdf: 4.9.2
xarray: 2024.3.0
pandas: 2.2.2
numpy: 1.26.4
scipy: 1.13.0
netCDF4: 1.6.5
pydap: None
h5netcdf: 1.3.0
h5py: 3.11.0
Nio: None
zarr: 2.17.2
cftime: 1.6.3
nc_time_axis: None
iris: None
bottleneck: None
dask: 2024.4.1
distributed: 2024.4.1
matplotlib: 3.8.4
cartopy: 0.23.0
seaborn: None
numbagg: None
fsspec: 2024.3.1
cupy: None
pint: 0.23
sparse: None
flox: None
numpy_groupies: None
setuptools: 69.5.1
pip: 24.0
conda: 24.3.0
pytest: 8.1.1
mypy: 1.9.0
IPython: 8.22.2
sphinx: 7.3.5
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8957/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1575938277 | I_kwDOAMm_X85d7ujl | 7516 | Dataset.where performances regression. | Thomas-Z 1492047 | open | 0 | 10 | 2023-02-08T11:19:34Z | 2023-05-03T12:58:14Z | CONTRIBUTOR | What happened?Hello, I'm using the Dataset.where function to select data based on some fields values and it takes way to much time! The dask dashboard seems to show some tasks repeating themselves many times. The provided example uses a 1D array for which the selection could be done with Dataset.sel but with our real usecase we make selections on 2D variables. This problem seems to have appeared with the 2022.6.0 xarray release, the 2022.3.0 is working as expected. What did you expect to happen?Using the 2022.3 release, this selection takes 1.37 seconds. Using the 2022.6.0 up to the 2023.2.0 (the one from yesterday), this selection takes 8.47 seconds. This example is a very simple and small one, with real data and use case we simply cannot use this function anymore. Minimal Complete Verifiable Example```Python import dask.array as da import distributed as dist import xarray as xr client = dist.Client() Using small chunks emphasis the problemds = xr.Dataset( {"field": xr.DataArray(data=da.empty(shape=10000, chunks=10), dims=("x"))} ) sel = ds["field"] > 0 ds.where(sel, drop=True) ``` MVCE confirmation
Relevant log outputNo response Anything else we need to know?No response EnvironmentProblematic version
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.9 | packaged by conda-forge | (main, Feb 2 2023, 20:20:04) [GCC 11.3.0]
python-bits: 64
OS: Linux
OS-release: 5.15.0-58-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: fr_FR.UTF-8
LOCALE: ('fr_FR', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2023.2.0
pandas: 1.5.3
numpy: 1.23.5
scipy: 1.8.1
netCDF4: 1.6.2
pydap: None
h5netcdf: 1.1.0
h5py: 3.8.0
Nio: None
zarr: 2.13.6
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.3.4
cfgrib: 0.9.10.3
iris: None
bottleneck: None
dask: 2023.1.1
distributed: 2023.1.1
matplotlib: 3.6.3
cartopy: 0.21.1
seaborn: None
numbagg: None
fsspec: 2023.1.0
cupy: None
pint: 0.20.1
sparse: None
flox: None
numpy_groupies: None
setuptools: 67.1.0
pip: 23.0
conda: 22.11.1
pytest: 7.2.1
mypy: None
IPython: 8.7.0
sphinx: 5.3.0
Working version
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.9 | packaged by conda-forge | (main, Feb 2 2023, 20:20:04) [GCC 11.3.0]
python-bits: 64
OS: Linux
OS-release: 5.15.0-58-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: fr_FR.UTF-8
LOCALE: ('fr_FR', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2022.3.0
pandas: 1.5.3
numpy: 1.23.5
scipy: 1.8.1
netCDF4: 1.6.2
pydap: None
h5netcdf: 1.1.0
h5py: 3.8.0
Nio: None
zarr: 2.13.6
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.3.4
cfgrib: 0.9.10.3
iris: None
bottleneck: None
dask: 2023.1.1
distributed: 2023.1.1
matplotlib: 3.6.3
cartopy: 0.21.1
seaborn: None
numbagg: None
fsspec: 2023.1.0
cupy: None
pint: 0.20.1
sparse: None
setuptools: 67.1.0
pip: 23.0
conda: 22.11.1
pytest: 7.2.1
IPython: 8.7.0
sphinx: 5.3.0
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7516/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
reopened | xarray 13221727 | issue | |||||||
372848074 | MDU6SXNzdWUzNzI4NDgwNzQ= | 2501 | open_mfdataset usage and limitations. | Thomas-Z 1492047 | closed | 0 | 22 | 2018-10-23T07:31:42Z | 2021-01-27T18:06:16Z | 2021-01-27T18:06:16Z | CONTRIBUTOR | I'm trying to understand and use the open_mfdataset function to open a huge amount of files. I thought this function would be quit similar to dask.dataframe.from_delayed and allow to "load" and work on an amount of data only limited by the number of Dask workers (or "unlimited" considering it could be "lazily loaded"). But my tests showed something quit different. It seems xarray requires the index to be copied back to the Dask client in order to "auto_combine" data. Doing some tests on a small portion of my data I have something like this. Each file has these dimensions: time: ~2871, xx_ind: 40, yy_ind: 128. The concatenation of these files is made on the time dimension and my understanding is that only the time is loaded and brought back to the client (other dimensions are constant). Parallel tests are made with 200 dask workers. ```python =================== Loading 1002 files =================== xr.open_mfdataset('1002.nc') peak memory: 1660.59 MiB, increment: 1536.25 MiB Wall time: 1min 29s xr.open_mfdataset('1002.nc', parallel=True) peak memory: 1745.14 MiB, increment: 1602.43 MiB Wall time: 53 s =================== Loading 5010 files =================== xr.open_mfdataset('5010.nc') peak memory: 7419.99 MiB, increment: 7315.36 MiB Wall time: 8min 33s xr.open_mfdataset('5010.nc', parallel=True) peak memory: 8249.75 MiB, increment: 8112.07 MiB Wall time: 4min 48s ``` As you can see, the amount of memory used for this operation is significant and I won't be able to do this on much more files. When using the parallel option, the loading of files take a few seconds (judging from what the Dask dashboard is showing) and I'm guessing the rest of the time is for the "auto_combine". So I'm wondering if I'm doing something wrong, if there other way to load data or if I cannot use xarray directly for this quantity of data and have to use Dask directly. Thanks in advance.
INSTALLED VERSIONS
------------------
commit: None
python: 3.5.2.final.0
python-bits: 64
OS: Linux
OS-release: 4.15.0-34-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: fr_FR.UTF-8
LOCALE: fr_FR.UTF-8
xarray: 0.10.9+32.g9f4474d.dirty
pandas: 0.23.4
numpy: 1.15.2
scipy: 1.1.0
netCDF4: 1.4.1
h5netcdf: 0.6.2
h5py: 2.8.0
Nio: None
zarr: 2.2.0
cftime: 1.0.1
PseudonetCDF: None
rasterio: None
iris: None
bottleneck: None
cyordereddict: None
dask: 0.19.4
distributed: 1.23.3
matplotlib: 3.0.0
cartopy: None
seaborn: None
setuptools: 40.4.3
pip: 18.1
conda: None
pytest: 3.9.1
IPython: 7.0.1
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2501/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
676696822 | MDExOlB1bGxSZXF1ZXN0NDY1OTYxOTIw | 4333 | Support explicitly setting a dimension order with to_dataframe() | Thomas-Z 1492047 | closed | 0 | 11 | 2020-08-11T08:46:45Z | 2020-08-19T20:37:38Z | 2020-08-14T18:28:26Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/4333 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4333/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
347895055 | MDU6SXNzdWUzNDc4OTUwNTU= | 2346 | Dataset/DataArray to_dataframe() dimensions order mismatch. | Thomas-Z 1492047 | closed | 0 | 4 | 2018-08-06T12:03:00Z | 2020-08-10T17:45:43Z | 2020-08-08T07:10:28Z | CONTRIBUTOR | Code Sample```python import xarray as xr import numpy as np data = xr.DataArray(np.random.randn(2, 3), coords={'x': ['a', 'b']}, dims=('y', 'x')) ds = xr.Dataset({'foo': data}) Applied on the Datasetds.to_dataframe() foox ya 0 0.3485191 -0.3226342 -0.683181b 0 0.1975011 0.5048102 -1.871626Applied to the DataArrayds['foo'].to_dataframe() fooy x0 a 0.348519b 0.1975011 a -0.322634b 0.5048102 a -0.683181b -1.871626``` Problem descriptionThe to_dataframe method applied to a DataArray will respect the dimensions order whereas the same method applied to a Dataset will use an alphabetically sorted order. In both situation to_dataframe calls _to_dataframe() with an argument. The DataArray uses an OrderedDict but the Dataset uses self.dims (which is a SortedKeyDict) as argument. Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2346/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);