issues
8 rows where user = 1322974 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
117039129 | MDU6SXNzdWUxMTcwMzkxMjk= | 659 | groupby very slow compared to pandas | anntzer 1322974 | closed | 0 | 9 | 2015-11-16T02:43:57Z | 2022-05-15T02:38:30Z | 2022-05-15T02:38:30Z | CONTRIBUTOR | ``` import timeit import numpy as np from pandas import DataFrame from xray import Dataset, DataArray df = DataFrame({"a": np.r_[np.arange(500.), np.arange(500.)], "b": np.arange(1000.)}) print(timeit.repeat('df.groupby("a").agg("mean")', globals={"df": df}, number=10)) print(timeit.repeat('df.groupby("a").agg(np.mean)', globals={"df": df, "np": np}, number=10)) ds = Dataset({"a": DataArray(np.r_[np.arange(500.), np.arange(500.)]), "b": DataArray(np.arange(1000.))}) print(timeit.repeat('ds.groupby("a").mean()', globals={"ds": ds}, number=10)) ``` This outputs
i.e. xray's groupby is ~100 times slower than pandas' one (and 200 times slower than passing (This is the actual order or magnitude of the data size and redundancy I want to handle, i.e. thousands of points with very limited duplication.) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/659/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
111795064 | MDU6SXNzdWUxMTE3OTUwNjQ= | 627 | string coordinate gets converted to object coordinate upon addition of variable to dataset | anntzer 1322974 | closed | 0 | 10 | 2015-10-16T09:29:58Z | 2021-03-27T21:19:33Z | 2021-03-27T21:19:33Z | CONTRIBUTOR | With the current HEAD, consider ``` import numpy as np from xray import * ds = Dataset({"1": DataArray(np.zeros(3), dims=["a"], coords={"a": list("xyz")})}) print(ds) ds["2"] = DataArray(np.zeros(2), dims=["a"], coords={"a": list("xy")}) print(ds) ``` This outputs
Note that the dtype of the Python3.5, numpy 1.10.1, xray master (6ea7eb2b388075cc838c5ddf0ddaa47020cfcb89) With 0.6.0 the coordinate is of object dtype both before and after. I forgot why I tried master but I must have had a good reason... |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/627/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
125708367 | MDU6SXNzdWUxMjU3MDgzNjc= | 712 | DataArrays should display their coordinates in the natural order | anntzer 1322974 | open | 0 | 13 | 2016-01-08T22:33:05Z | 2020-11-06T18:48:54Z | CONTRIBUTOR | Consider ``` from collections import * import numpy as np from xray import * d1 = DataArray(np.empty((2, 2)), coords=OrderedDict([("foo", [0, 1]), ("bar", [0, 1])])) d2 = DataArray(np.empty((2, 2)), coords=OrderedDict([("bar", [0, 1]), ("foo", [0, 1])])) ds = Dataset({"d1": d1, "d2": d2}) print(ds.d1) print(ds.d2) ``` This outputs
I understand that internally both DataArrays use the same coords object and thus the same coords order, but it would be helpful if, when printing d2 by itself, the coordinates were printed in the natural order ("bar", "foo"). In particular, when working interactively, the list of coordinates at the end of the repr is the most easy thing to spot, and thus most helpful to know how to format the call to |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/712/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
112254767 | MDU6SXNzdWUxMTIyNTQ3Njc= | 631 | Confusing error (or lack thereof) when coordinate and variable share the same name | anntzer 1322974 | open | 0 | 5 | 2015-10-19T23:39:22Z | 2019-04-19T15:39:55Z | CONTRIBUTOR | It probably makes sense to prevent dataset to have variables sharing the names of coordinates (what would
fails with
actually creates an empty dataset using
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/631/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
112253425 | MDU6SXNzdWUxMTIyNTM0MjU= | 630 | Whether a DataArray is copied when inserted into a Dataset depends on whether coordinates match exactly | anntzer 1322974 | open | 0 | 16 | 2015-10-19T23:27:15Z | 2019-01-31T18:40:58Z | CONTRIBUTOR | Consider ``` import numpy as np from xray import * ds = Dataset({"a": DataArray(np.zeros((3, 4)))}) ds["b"] = b = DataArray(np.zeros((3, 4))) b[0, 0] = 1 print(ds["b"][0, 0]) # ==> prints 1 ds = Dataset({"a": DataArray(np.zeros((3, 4)))}) ds["b"] = b = DataArray(np.zeros((3, 3))) # !!! we implicitly fill the last column with nans. b[0, 0] = 1 print(ds["b"][0, 0]) # ==> prints 0 ``` In the first case, the dataset was modified when the dataarray was modified, but not in the second case. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/630/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
114732169 | MDU6SXNzdWUxMTQ3MzIxNjk= | 643 | "naive" iteration is very slow | anntzer 1322974 | closed | 0 | 2 | 2015-11-03T02:53:04Z | 2019-01-15T21:09:07Z | 2019-01-15T21:09:07Z | CONTRIBUTOR | ``` $ ipython Python 3.5.0 (default, Sep 20 2015, 11:28:25) Type "copyright", "credits" or "license" for more information. IPython 4.0.0 -- An enhanced Interactive Python. ? -> Introduction and overview of IPython's features. %quickref -> Quick reference. help -> Python's own help system. object? -> Details about 'object', use 'object??' for extra details. Using matplotlib backend: Qt4Agg In [1]: from xray import DataArray Iteration over a Python listIn [2]: %%timeit t = list(range(10000)) for _ in t: pass ...: 10000 loops, best of 3: 87.3 µs per loop Iteration over a ndarrayIn [3]: %%timeit t = np.arange(10000) for _ in t: pass ...: 1000 loops, best of 3: 472 µs per loop Iteration over a DataArrayIn [4]: %%timeit t = DataArray(np.arange(10000)) for _ in t: pass ...: 1 loops, best of 3: 818 ms per loop ``` I'm not sure how much can be done about this as iterating over a DataArray needs to create a bunch of temporary objects (and I understand the emphasis is as usual on vectorized operations, etc.) but a >1500 fold difference certainly doesn't look good. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/643/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
170458908 | MDU6SXNzdWUxNzA0NTg5MDg= | 958 | Test failure with matplotlib 2.0b3 | anntzer 1322974 | closed | 0 | 1 | 2016-08-10T16:21:16Z | 2018-10-26T23:12:28Z | 2018-10-26T23:12:28Z | CONTRIBUTOR | mpl 2.0b3 / xarray HEAD Arch Linux, Python 3.5.2 ``` ============================================================================================= FAILURES ============================================================================================= ____________ TestPlot.test_subplot_kws _____________ self = <xarray.test.test_plot.TestPlot testMethod=test_subplot_kws>
xarray/test/test_plot.py:148: self = <xarray.test.test_plot.TestPlot testMethod=test_subplot_kws>, a1 = (1.0, 0.0, 0.0, 1), a2 = 'r'
xarray/test/init.py:164: AssertionError --------------------------------------------------------------------------------------- Captured stderr call --------------------------------------------------------------------------------------- /usr/lib/python3.5/site-packages/matplotlib/cbook.py:137: MatplotlibDeprecationWarning: The axisbg attribute was deprecated in version 2.0. Use facecolor instead. warnings.warn(message, mplDeprecation, stacklevel=1) /home/antony/src/extern/xarray/xarray/test/test_plot.py:148: MatplotlibDeprecationWarning: The get_axis_bgcolor function was deprecated in version 2.0. Use get_facecolor instead. self.assertEqual(ax.get_axis_bgcolor(), 'r') ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/958/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
117297089 | MDExOlB1bGxSZXF1ZXN0NTA5MTEzMzQ= | 661 | Document pandas' better groupby performance. | anntzer 1322974 | closed | 0 | 1 | 2015-11-17T07:04:50Z | 2015-11-17T09:10:04Z | 2015-11-17T08:54:31Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/661 | cf. #659. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/661/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);