issues
7 rows where user = 1277781 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
714228717 | MDExOlB1bGxSZXF1ZXN0NDk3MzcyNTY2 | 4484 | xarray.map | kefirbandi 1277781 | closed | 0 | 12 | 2020-10-04T04:11:29Z | 2023-10-16T18:54:19Z | 2023-10-16T18:54:19Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/4484 | UPDATE: Please let me know whether this PR can be considered to be merged. If not I won't bother trying to fix failed tests such as:
Thanks
I implemented the top-level xarray.map function. It is a generalization of the Dataset.map method for those functions which take more than one DataArray as input. The function will be applied to the intersection of the variables in the datasets. E.g:
(I probably messed up something with git as the commits listed below also include my earlier commits not related to this PR. But the list of files is clean, it only includes what I'd like to merge) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4484/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
423742774 | MDU6SXNzdWU0MjM3NDI3NzQ= | 2835 | Dataset.copy(deep=True) does not deepcopy .attrs | kefirbandi 1277781 | closed | 0 | 12 | 2019-03-21T13:58:03Z | 2022-09-29T16:36:52Z | 2022-09-29T16:36:52Z | CONTRIBUTOR | But it would be expected (at least by me) that it does. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2835/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
623131373 | MDU6SXNzdWU2MjMxMzEzNzM= | 4087 | Bug in conversion frompd.series in 0.15.1 | kefirbandi 1277781 | closed | 0 | 3 | 2020-05-22T11:04:11Z | 2020-05-22T11:59:40Z | 2020-05-22T11:29:46Z | CONTRIBUTOR | Bug in conversion frompd.series MCVE Code Sample```python import pandas as pd import xarray as xr data3 = pd.DataFrame([(1, 2, 1), (2, 2, 1)],columns=['x', 'B', 'A']) data3 = data3.set_index(['x']) data3.rename_axis('tag', axis=1, inplace=True) data3 = data3.stack() print(data3) print(xr.DataArray.from_series(data3).sel(tag='B')) ``` Expected Output[2,2] Problem DescriptionThe same code gives the expected output in xarray 0.14.1 Also works correctly if "tag" dimension is properly sorted during DataFrame cretion. VersionsOutput of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.6.7 | packaged by conda-forge | (default, Jul 2 2019, 02:18:42) [GCC 7.3.0] python-bits: 64 OS: Linux OS-release: 4.1.12-124.38.1.el7uek.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: en_US.utf8 LANG: en_US.utf8 LOCALE: en_US.UTF-8 libhdf5: 1.10.4 libnetcdf: 4.6.3 xarray: 0.15.1 pandas: 0.25.0 numpy: 1.17.0 scipy: 1.3.0 netCDF4: 1.5.3 pydap: None h5netcdf: None h5py: 2.7.1 Nio: None zarr: None cftime: 1.1.3 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2.16.0 distributed: None matplotlib: 3.1.1 cartopy: None seaborn: 0.9.0 numbagg: None setuptools: 46.3.1 pip: 19.2.1 conda: 4.8.3 pytest: 5.3.0 IPython: 7.7.0 sphinx: 2.1.2 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4087/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
537934462 | MDU6SXNzdWU1Mzc5MzQ0NjI= | 3621 | ".indexes" not updated when setting values through ".values" | kefirbandi 1277781 | closed | 0 | 1 | 2019-12-14T16:27:27Z | 2019-12-16T18:38:10Z | 2019-12-16T18:38:10Z | CONTRIBUTOR | MCVE Code Sample```python import xarray as xr da1 = xr.DataArray([1,2],dims=['x'],coords={'x':[0,1]}) print(da1.indexes) da1['x'].values = [1,2] print(da1.indexes) print('--------') print(da1['x'])
Expected Output```python x: Int64Index([0, 1], dtype='int64', name='x') x: Int64Index([1, 2], dtype='int64', name='x') <xarray.DataArray 'x' (x: 2)> array([1, 2]) Coordinates: * x (x) int32 1 2 ``` Problem Description
The issue does not occur if I
a, either do not call ".indexes" before setting the value, or
b, call Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3621/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
414277715 | MDU6SXNzdWU0MTQyNzc3MTU= | 2786 | groupby with non-scalar coordinate | kefirbandi 1277781 | closed | 0 | 1 | 2019-02-25T19:52:29Z | 2019-10-11T15:55:36Z | 2019-10-11T15:55:36Z | CONTRIBUTOR | Code Sample```python import numpy as np import xarray as xr def noop(da): return da def expd(da): return da.expand_dims(['A']) na=np.array([[1,2],[3,4]]) xa=xr.DataArray(na,dims=['A','B']) This works:r1 = xa.groupby('A').apply(noop) print("!!!!") This doesn't:r2 = xa.groupby('A').apply(expd) ``` Problem descriptionIs this intended behavior? The reason I would need this is to be able to increase the size of each group. Expected OutputI expect r1 to be equivalent to r2 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2786/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
424115176 | MDExOlB1bGxSZXF1ZXN0MjYzNTM4NTE4 | 2839 | Fixing deepcopy for Dataset.attrs | kefirbandi 1277781 | closed | 0 | 1 | 2019-03-22T09:24:54Z | 2019-03-30T03:14:38Z | 2019-03-30T03:14:38Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/2839 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2839/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
256251595 | MDU6SXNzdWUyNTYyNTE1OTU= | 1563 | 0.8.2 incompatible with pandas 0.20.1 ? | kefirbandi 1277781 | closed | 0 | 4 | 2017-09-08T13:19:25Z | 2017-09-08T23:15:36Z | 2017-09-08T20:27:06Z | CONTRIBUTOR | This issue may be related to #1386 I hope this part of the stacktrace is sufficient to demonstrate my point: File "C:\src\validation\main\risk_reporting\data_access\db_model.py", line 246, in get_data ds = ds.groupby('pvshort').apply(select_latest_pv) File "C:\Anaconda2\lib\site-packages\xarray\core\common.py", line 345, in groupby return self.groupby_cls(self, group, squeeze=squeeze) File "C:\Anaconda2\lib\site-packages\xarray\core\groupby.py", line 226, in init unique_values, group_indices = unique_value_groups(group, sort=sort) File "C:\Anaconda2\lib\site-packages\xarray\core\groupby.py", line 34, in unique_value_groups inverse, values = pd.factorize(ar, sort=sort) File "C:\Anaconda2\lib\site-packages\pandas\core\algorithms.py", line 552, in factorize values = _ensure_arraylike(values) File "C:\Anaconda2\lib\site-packages\pandas\core\algorithms.py", line 166, in _ensure_arraylike values = lib.list_to_object_array(values) TypeError: Argument 'obj' has incorrect type (expected list, got DataArray) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1563/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);