issues
21 rows where user = 12237157 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, updated_at, closed_at, draft, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
779392905 | MDU6SXNzdWU3NzkzOTI5MDU= | 4768 | weighted for xr.corr | aaronspring 12237157 | closed | 0 | 2 | 2021-01-05T18:24:29Z | 2023-12-12T00:24:22Z | 2023-12-12T00:24:22Z | CONTRIBUTOR | Is your feature request related to a problem? Please describe.
I want to make weighted correlation, e.g. spatial correlation but weighted Describe the solution you'd like
We started xskillscore https://github.com/xarray-contrib/xskillscore some time ago, before xr.corr was implemented and have keywords Additional context
My question here is whether it would be better to move these xskillscore metrics upward into xarray or start a PR for weighted and skipna for |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4768/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1471561942 | I_kwDOAMm_X85XtkDW | 7342 | `xr.DataArray.plot.pcolormesh(robust="col/row")` | aaronspring 12237157 | closed | 0 | 3 | 2022-12-01T16:01:27Z | 2022-12-12T12:17:45Z | 2022-12-12T12:17:45Z | CONTRIBUTOR | Is your feature request related to a problem?I often want to get a quick view from multi-dimensional data from an Describe the solution you'd like
What I would like to see, see below in alternative what I always do Describe alternatives you've considered
Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7342/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1071049280 | I_kwDOAMm_X84_1upA | 6045 | `xr.infer_freq` month bug for `freq='6MS'` starting Jan becomes `freq='2QS-OCT'` | aaronspring 12237157 | closed | 0 | 3 | 2021-12-03T23:36:56Z | 2022-06-24T22:58:47Z | 2022-06-24T22:58:47Z | CONTRIBUTOR | What happened: @dougiesquire brought up https://github.com/pangeo-data/climpred/issues/698. During debugging I discovered unexpected behaviour in What you expected to happen:
Minimal Complete Verifiable Example: Creating an ```python import pandas as pd i_pd = pd.date_range(start="2000-01-01", end="2002-01-01", freq="6MS") i_pd DatetimeIndex(['2000-01-01', '2000-07-01', '2001-01-01', '2001-07-01', '2002-01-01'], dtype='datetime64[ns]', freq='6MS') pd.infer_freq(i_pd) '2QS-OCT' import xarray as xr xr.cftime_range(start="2000-01-01", end="2002-01-01", freq="6MS") CFTimeIndex([2000-01-01 00:00:00, 2000-07-01 00:00:00, 2001-01-01 00:00:00, 2001-07-01 00:00:00, 2002-01-01 00:00:00], dtype='object', length=5, calendar='gregorian', freq='2QS-OCT') ``` Anything else we need to know?: outline how to solve: https://github.com/pangeo-data/climpred/issues/698#issuecomment-985899966 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6045/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1214290591 | I_kwDOAMm_X85IYJqf | 6510 | Feature request: raise more informative error message for `xr.open_dataset(list_of_paths)` | aaronspring 12237157 | open | 0 | 4 | 2022-04-25T10:22:25Z | 2022-04-29T16:47:56Z | CONTRIBUTOR | Is your feature request related to a problem?I sometimes use ```python import xarray as xr xr.version # '2022.3.0' ds = xr.tutorial.load_dataset("air_temperature") ds.isel(time=slice(None,1500)).to_netcdf("file1.nc") ds.isel(time=slice(1500,None)).to_netcdf("file2.nc") xr.open_mfdataset(["file1.nc","file2.nc"]) # works xr.open_mfdataset("file?.nc") # works I understand what I need to do herexr.open_dataset("file?.nc") # fails FileNotFoundError: No such file or directory: b'/dir/file?.nc' I dont here; I also first try to check whether one of these files is corruptxr.open_dataset(["file1.nc","file2.nc"]) # fails ValueError: did not find a match in any of xarray's currently installed IO backends ['netcdf4', 'h5netcdf', 'scipy', 'cfgrib']. Consider explicitly selecting one of the installed engines via the Describe the solution you'd likedirecting the user towards the solution, i.e. "found path as list, please use open_mfdataset" Describe alternatives you've consideredNo response Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6510/reactions", "total_count": 6, "+1": 6, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1092867975 | I_kwDOAMm_X85BI9eH | 6134 | [FEATURE]: `CFTimeIndex.shift(float)` | aaronspring 12237157 | closed | 0 | 1 | 2022-01-03T22:33:58Z | 2022-02-15T23:05:04Z | 2022-02-15T23:05:04Z | CONTRIBUTOR | Is your feature request related to a problem?
For small freqs, that shouldnt be a problem as Describe the solution you'd like
Describe alternatives you've consideredsolution we have in climpred: https://github.com/pangeo-data/climpred/blob/617223b5bea23a094065efe46afeeafe9796fa97/climpred/utils.py#L657 Additional contexthttps://xarray.pydata.org/en/stable/generated/xarray.CFTimeIndex.shift.html |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6134/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1093466537 | PR_kwDOAMm_X84wg_Js | 6135 | Implement multiplication of cftime Tick offsets by floats | aaronspring 12237157 | closed | 0 | 7 | 2022-01-04T15:28:16Z | 2022-02-15T23:05:04Z | 2022-02-15T23:05:04Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/6135 |
Refs: - https://docs.python.org/3/library/datetime.html - https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timedelta.html#pandas.Timedelta - https://xarray.pydata.org/en/stable/generated/xarray.CFTimeIndex.shift.html |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6135/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1120583442 | I_kwDOAMm_X85Cyr8S | 6230 | [PERFORMANCE]: `isin` on `CFTimeIndex`-backed `Coordinate` slow | aaronspring 12237157 | open | 0 | 5 | 2022-02-01T12:04:02Z | 2022-02-07T23:40:48Z | CONTRIBUTOR | Is your feature request related to a problem?I want to do ```python import xarray as xr import numpy as np n=1000 coord1 = xr.cftime_range(start='2000', freq='MS', periods=n) coord2 = xr.cftime_range(start='2000', freq='3MS', periods=n) cftimeindex: very fast%timeit coord1.isin(coord2) # 743 µs ± 1.33 µs np.isin on index.asi8%timeit np.isin(coord1.asi8,coord2.asi8) # 7.83 ms ± 14.1 µs da = xr.DataArray(np.random.random((n,n)),dims=['a','b'],coords={'a':coord1,'b':coord2}) when xr.DataArray coordinate slow%timeit da.a.isin(da.b) # 94.9 ms ± 959 µs when converting xr.DataArray coordinate back to index slow%timeit np.isin(da.a.to_index(), da.b.to_index()) # 97.4 ms ± 819 µs when converting xr.DataArray coordinate back to index asi%timeit np.isin(da.a.to_index().asi8, da.b.to_index().asi8) # 7.89 ms ± 15.2 µs ``` Describe the solution you'd likefaster conversion from Describe alternatives you've considered
Additional contextunsure whether this issue should go here on in |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6230/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1119996723 | PR_kwDOAMm_X84x3fWS | 6223 | `GHA` `concurrency` followup | aaronspring 12237157 | closed | 0 | 1 | 2022-01-31T22:21:09Z | 2022-01-31T23:16:20Z | 2022-01-31T23:16:20Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/6223 | follows #6210 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6223/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1118564242 | PR_kwDOAMm_X84xywhB | 6210 | `GHA` `concurrency` | aaronspring 12237157 | closed | 0 | 3 | 2022-01-30T14:56:01Z | 2022-01-31T22:25:27Z | 2022-01-31T16:59:27Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/6210 |
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#concurrency
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6210/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1071054456 | PR_kwDOAMm_X84vYnOq | 6046 | Fix `xr.infer_freq` quarterly month | aaronspring 12237157 | closed | 0 | 0 | 2021-12-03T23:48:43Z | 2022-01-04T13:54:49Z | 2022-01-04T13:54:49Z | CONTRIBUTOR | 1 | pydata/xarray/pulls/6046 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6046/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1058047751 | PR_kwDOAMm_X84uv1d0 | 6007 | Use condas dask-core in ci instead of dask to speedup ci and reduce dependencies | aaronspring 12237157 | closed | 0 | 1 | 2021-11-19T02:02:41Z | 2021-11-28T21:01:36Z | 2021-11-28T04:40:34Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/6007 |
Tried to reduce dependencies from installing dask via conda which installs like pip install dask[complete]. dask-core is like pip install dask. https://github.com/xgcm/xhistogram/pull/71#discussion_r752738286 Why? dask[complete] includes bokeh etc which are not needed here and likely speed up CI setup/install times but now dask and dask-core are conda installed :( seems like iris installs dask https://github.com/conda-forge/iris-feedstock/blob/master/recipe/meta.yaml, so this would require an iris-feedstock PR first linking https://github.com/SciTools/iris/pull/4434 and https://github.com/conda-forge/iris-feedstock/pull/77 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6007/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
954308458 | MDExOlB1bGxSZXF1ZXN0Njk4MjI0Mjcx | 5639 | Del duplicate set_options in api.rst | aaronspring 12237157 | closed | 0 | 3 | 2021-07-27T22:19:38Z | 2021-07-30T08:47:36Z | 2021-07-30T08:20:15Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5639 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5639/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
827561388 | MDExOlB1bGxSZXF1ZXN0NTg5NDU5NDQ1 | 5020 | add polyval to polyfit see also | aaronspring 12237157 | closed | 0 | 1 | 2021-03-10T11:14:02Z | 2021-03-10T14:20:11Z | 2021-03-10T12:59:41Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5020 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5020/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
748094631 | MDExOlB1bGxSZXF1ZXN0NTI1MTgzOTQ5 | 4597 | add freq as CFTimeIndex property and to CFTimeIndex.__repr__ | aaronspring 12237157 | closed | 0 | 11 | 2020-11-21T20:12:36Z | 2020-11-25T09:16:49Z | 2020-11-24T21:53:27Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/4597 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4597/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
707223289 | MDU6SXNzdWU3MDcyMjMyODk= | 4451 | xr.open_dataset(remote_url) file not found | aaronspring 12237157 | closed | 0 | 1 | 2020-09-23T10:00:54Z | 2020-09-23T12:03:37Z | 2020-09-23T12:03:37Z | CONTRIBUTOR | What happened: I tried to open a remote url and got OSError, but !wget url works What you expected to happen: open the remote netcdf file Minimal Complete Verifiable Example: ```python from netCDF4 import Dataset import netCDF4 netCDF4.version import xarray as xr xr.version url='https://crudata.uea.ac.uk/cru/data/temperature/HadCRUT.4.6.0.0.median.nc' working_url='https://thredds.ucar.edu/thredds/dodsC/grib/NCEP/GFS/Global_0p5deg/GFS_Global_0p5deg_20200923_0000.grib2'xr.open_dataset(url) ... netCDF4/_netCDF4.pyx in netCDF4._netCDF4.Dataset.init() netCDF4/_netCDF4.pyx in netCDF4._netCDF4._ensure_nc_success() OSError: [Errno -90] NetCDF: file not found: b'https://crudata.uea.ac.uk/cru/data/temperature/HadCRUT.4.6.0.0.median.nc' seems to be netcdf4 upstream issueDataset(url)OSError Traceback (most recent call last) <ipython-input-14-265839034cee> in <module> ----> 1 Dataset(url) netCDF4/_netCDF4.pyx in netCDF4._netCDF4.Dataset.init() netCDF4/_netCDF4.pyx in netCDF4._netCDF4._ensure_nc_success() OSError: [Errno -90] NetCDF: file not found: b'https://crudata.uea.ac.uk/cru/data/temperature/HadCRUT.4.6.0.0.median.nc' ``` Anything else we need to know?: Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.7.6 | packaged by conda-forge | (default, Jan 7 2020, 22:33:48) [GCC 7.3.0] python-bits: 64 OS: Linux OS-release: 2.6.32-754.29.2.el6.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: en_US.UTF-8 LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.5 libnetcdf: 4.6.2 xarray: 0.16.1 pandas: 1.1.2 numpy: 1.19.1 scipy: 1.5.2 netCDF4: 1.5.1.2 pydap: installed h5netcdf: 0.8.0 h5py: 2.10.0 Nio: 1.5.5 zarr: 2.4.0 cftime: 1.2.1 nc_time_axis: 1.2.0 PseudoNetCDF: None rasterio: 1.1.0 cfgrib: 0.9.7.6 iris: 2.2.0 bottleneck: 1.3.1 dask: 2.15.0 distributed: 2.20.0 matplotlib: 3.1.2 cartopy: 0.17.0 seaborn: 0.10.1 numbagg: None pint: 0.11 setuptools: 47.1.1.post20200529 pip: 20.2.3 conda: None pytest: 5.3.5 IPython: 7.15.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4451/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
668717850 | MDU6SXNzdWU2Njg3MTc4NTA= | 4290 | bool(Dataset(False)) is True | aaronspring 12237157 | closed | 0 | 9 | 2020-07-30T13:23:14Z | 2020-08-05T14:25:55Z | 2020-08-05T13:48:55Z | CONTRIBUTOR | What happened: ```python v=True bool(xr.DataArray(v)) # True bool(xr.DataArray(v).to_dataset(name='var')) # True v=False bool(xr.DataArray(v)) # False unexpected behaviour belowbool(xr.DataArray(v).to_dataset(name='var')) # True ``` What you expected to happen:
Maybe this is intentional and I dont understand why. xr.version = '0.16.0' |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4290/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
624378150 | MDExOlB1bGxSZXF1ZXN0NDIyODEzOTYy | 4092 | CFTimeIndex calendar in repr | aaronspring 12237157 | closed | 0 | 19 | 2020-05-25T15:55:20Z | 2020-07-23T17:38:39Z | 2020-07-23T10:42:29Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/4092 |
Done:
- added |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4092/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
611839345 | MDU6SXNzdWU2MTE4MzkzNDU= | 4025 | Visualize task tree | aaronspring 12237157 | closed | 0 | 3 | 2020-05-04T12:31:25Z | 2020-05-08T09:10:08Z | 2020-05-04T14:43:25Z | CONTRIBUTOR | While reading this excellent discussion on working with large onetimestep datasets https://discourse.pangeo.io/t/best-practices-to-go-from-1000s-of-netcdf-files-to-analyses-on-a-hpc-cluster/588/10 I asked myself again why we don’t have the task tree visualisation in xarray as we have in dask. Is there a technical reason that prevents us from implementing visualize? This feature would be extremely useful for me. Maybe it’s easier to do this for dataarrays first. ```python ds = rasm Tutorialds = ds.chunk({“time”:2}) ds.visualize() ``` Expected OutputFigure of task tree https://docs.dask.org/en/latest/graphviz.html Problem Descriptionvisualize the task tree only implemented in dask. Now I recreate my xr Problem in dask to circumvent. Nicer would be .visualize() in xarray. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4025/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
577105538 | MDExOlB1bGxSZXF1ZXN0Mzg0OTY0MDcz | 3844 | Implement skipna kwarg in xr.quantile | aaronspring 12237157 | closed | 0 | 5 | 2020-03-06T18:36:55Z | 2020-03-09T09:46:25Z | 2020-03-08T17:42:44Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/3844 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3844/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
577088426 | MDU6SXNzdWU1NzcwODg0MjY= | 3843 | Implement `skipna` in xr.quantile for speedup | aaronspring 12237157 | closed | 0 | 1 | 2020-03-06T17:58:28Z | 2020-03-08T17:42:43Z | 2020-03-08T17:42:43Z | CONTRIBUTOR |
MCVE Code Sample
%time _ = np.quantile(control,q,axis=0) CPU times: user 47.1 ms, sys: 4.27 ms, total: 51.4 ms Wall time: 52.6 ms %time _ = np.nanquantile(control,q,axis=0) CPU times: user 3.18 s, sys: 21.4 ms, total: 3.2 s Wall time: 3.22 s ``` Expected Outputfaster xr.quantile: ``` %time _ = control.quantile(dim='time',q=q) CPU times: user 4.95 s, sys: 34.3 ms, total: 4.98 s Wall time: 5.88 s %time _ = control.quantile(dim='time',q=q, skipna=False) CPU times: user 85.3 ms, sys: 16.7 ms, total: 102 ms Wall time: 127 ms ``` Problem Descriptionnp.nanquantile not always needed VersionsOutput of `xr.show_versions()`xr=0.15.1 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3843/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
433833707 | MDU6SXNzdWU0MzM4MzM3MDc= | 2900 | open_mfdataset with proprocess ds[var] | aaronspring 12237157 | closed | 0 | 3 | 2019-04-16T15:07:36Z | 2019-04-16T19:09:34Z | 2019-04-16T19:09:34Z | CONTRIBUTOR | Code Sample, a copy-pastable example if possibleI would like to load only one variable from larger files containing 10s of variables. The files get really large when I open them. I expect them to be opened lazily also fast if I only want to extract one variable (maybe this is my misunderstand here). I hoped to use Here my minimum example with 3 files of 12 timesteps each and two variable, but I only want to load one: ```python ds = xr.open_mfdataset(path) ds <xarray.Dataset> Dimensions: (depth: 1, depth_2: 1, time: 36, x: 2, y: 2) Coordinates: * depth (depth) float64 0.0 lon (y, x) float64 -48.11 -47.43 -48.21 -47.52 lat (y, x) float64 56.52 56.47 56.14 56.09 * depth_2 (depth_2) float64 90.0 * time (time) datetime64[ns] 1850-01-31T23:15:00 ... 1852-12-31T23:15:00 Dimensions without coordinates: x, y Data variables: co2flux (time, depth, y, x) float32 dask.array<shape=(36, 1, 2, 2), chunksize=(12, 1, 2, 2)> caex90 (time, depth_2, y, x) float32 dask.array<shape=(36, 1, 2, 2), chunksize=(12, 1, 2, 2)> def preprocess(ds,var='co2flux'): return ds[var] ds = xr.open_mfdataset(path,preprocess=preprocess)ValueError Traceback (most recent call last) <ipython-input-17-770267b86462> in <module> 1 def preprocess(ds,var='co2flux'): 2 return ds[var] ----> 3 ds = xr.open_mfdataset(path,preprocess=preprocess) /work/mh0727/m300524/anaconda3/envs/my_jupyter/lib/python3.6/site-packages/xarray/backends/api.py in open_mfdataset(paths, chunks, concat_dim, compat, preprocess, engine, lock, data_vars, coords, autoclose, parallel, **kwargs) 717 data_vars=data_vars, coords=coords, 718 infer_order_from_coords=infer_order_from_coords, --> 719 ids=ids) 720 except ValueError: 721 for ds in datasets: /work/mh0727/m300524/anaconda3/envs/my_jupyter/lib/python3.6/site-packages/xarray/core/combine.py in _auto_combine(datasets, concat_dims, compat, data_vars, coords, infer_order_from_coords, ids) 551 # Repeatedly concatenate then merge along each dimension 552 combined = _combine_nd(combined_ids, concat_dims, compat=compat, --> 553 data_vars=data_vars, coords=coords) 554 return combined 555 /work/mh0727/m300524/anaconda3/envs/my_jupyter/lib/python3.6/site-packages/xarray/core/combine.py in _combine_nd(combined_ids, concat_dims, data_vars, coords, compat) 473 data_vars=data_vars, 474 coords=coords, --> 475 compat=compat) 476 combined_ds = list(combined_ids.values())[0] 477 return combined_ds /work/mh0727/m300524/anaconda3/envs/my_jupyter/lib/python3.6/site-packages/xarray/core/combine.py in _auto_combine_all_along_first_dim(combined_ids, dim, data_vars, coords, compat) 491 datasets = combined_ids.values() 492 new_combined_ids[new_id] = _auto_combine_1d(datasets, dim, compat, --> 493 data_vars, coords) 494 return new_combined_ids 495 /work/mh0727/m300524/anaconda3/envs/my_jupyter/lib/python3.6/site-packages/xarray/core/combine.py in _auto_combine_1d(datasets, concat_dim, compat, data_vars, coords) 505 if concat_dim is not None: 506 dim = None if concat_dim is _CONCAT_DIM_DEFAULT else concat_dim --> 507 sorted_datasets = sorted(datasets, key=vars_as_keys) 508 grouped_by_vars = itertools.groupby(sorted_datasets, key=vars_as_keys) 509 concatenated = [_auto_concat(list(ds_group), dim=dim, /work/mh0727/m300524/anaconda3/envs/my_jupyter/lib/python3.6/site-packages/xarray/core/combine.py in vars_as_keys(ds) 496 497 def vars_as_keys(ds): --> 498 return tuple(sorted(ds)) 499 500 /work/mh0727/m300524/anaconda3/envs/my_jupyter/lib/python3.6/site-packages/xarray/core/common.py in bool(self) 80 81 def bool(self): ---> 82 return bool(self.values) 83 84 # Python 3 uses bool, Python 2 uses nonzero ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() ``` I was hoping that Problem descriptionI would expect from the documentation the below behaviour. Expected Output```python ds = xr.open_mfdataset(path,data_vars=['co2flux']) ds <xarray.Dataset> Dimensions: (depth: 1, depth_2: 1, time: 36, x: 2, y: 2) Coordinates: * depth (depth) float64 0.0 lon (y, x) float64 -48.11 -47.43 -48.21 -47.52 lat (y, x) float64 56.52 56.47 56.14 56.09 * depth_2 (depth_2) float64 90.0 * time (time) datetime64[ns] 1850-01-31T23:15:00 ... 1852-12-31T23:15:00 Dimensions without coordinates: x, y Data variables: co2flux (time, depth, y, x) float32 dask.array<shape=(36, 1, 2, 2), chunksize=(12, 1, 2, 2)> ds = xr.open_mfdataset(path,preprocess=preprocess) ds <xarray.Dataset> Dimensions: (depth: 1, depth_2: 1, time: 36, x: 2, y: 2) Coordinates: * depth (depth) float64 0.0 lon (y, x) float64 -48.11 -47.43 -48.21 -47.52 lat (y, x) float64 56.52 56.47 56.14 56.09 * depth_2 (depth_2) float64 90.0 * time (time) datetime64[ns] 1850-01-31T23:15:00 ... 1852-12-31T23:15:00 Dimensions without coordinates: x, y Data variables: co2flux (time, depth, y, x) float32 dask.array<shape=(36, 1, 2, 2), chunksize=(12, 1, 2, 2)> ``` Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2900/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);