home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

1 row where user = 112489422 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date)

type 1

  • issue 1

state 1

  • closed 1

repo 1

  • xarray 1
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
1355770800 I_kwDOAMm_X85Qz2uw 6969 Regression on DataArray.unstack on v2022.06.0 : "ValueError: IndexVariable objects must be 1-dimensional" bboutanquoi 112489422 closed 0 benbovy 4160723   1 2022-08-30T13:25:16Z 2022-09-27T10:35:40Z 2022-09-27T10:35:40Z NONE      

What happened?

Please see code below

With xarray:2022.06.0, DataArray.unstack raise an ValueError exception

```python-traceback

ValueError Traceback (most recent call last) Input In [2], in <cell line: 24>() 21 y = y.assign_coords(day=y.j + y.last_j) 22 y = y.set_index(multi=['sub_id', 'last_j']) ---> 24 y = y.unstack()

File /opt/conda/lib/python3.9/site-packages/xarray/core/dataarray.py:2402, in DataArray.unstack(self, dim, fill_value, sparse) 2342 def unstack( 2343 self, 2344 dim: Hashable | Sequence[Hashable] | None = None, 2345 fill_value: Any = dtypes.NA, 2346 sparse: bool = False, 2347 ) -> DataArray: 2348 """ 2349 Unstack existing dimensions corresponding to MultiIndexes into 2350 multiple new dimensions. (...) 2400 DataArray.stack 2401 """ -> 2402 ds = self._to_temp_dataset().unstack(dim, fill_value, sparse) 2403 return self._from_temp_dataset(ds)

File /opt/conda/lib/python3.9/site-packages/xarray/core/dataset.py:4656, in Dataset.unstack(self, dim, fill_value, sparse) 4652 result = result._unstack_full_reindex( 4653 dim, stacked_indexes[dim], fill_value, sparse 4654 ) 4655 else: -> 4656 result = result._unstack_once( 4657 dim, stacked_indexes[dim], fill_value, sparse 4658 ) 4659 return result

File /opt/conda/lib/python3.9/site-packages/xarray/core/dataset.py:4492, in Dataset.unstack_once(self, dim, index_and_vars, fill_value, sparse) 4489 else: 4490 fill_value = fill_value -> 4492 variables[name] = var.unstack_once( 4493 index=clean_index, 4494 dim=dim, 4495 fill_value=fill_value, 4496 sparse=sparse, 4497 ) 4498 else: 4499 variables[name] = var

File /opt/conda/lib/python3.9/site-packages/xarray/core/variable.py:1732, in Variable._unstack_once(self, index, dim, fill_value, sparse) 1727 # Indexer is a list of lists of locations. Each list is the locations 1728 # on the new dimension. This is robust to the data being sparse; in that 1729 # case the destinations will be NaN / zero. 1730 data[(..., *indexer)] = reordered -> 1732 return self._replace(dims=new_dims, data=data)

File /opt/conda/lib/python3.9/site-packages/xarray/core/variable.py:985, in Variable._replace(self, dims, data, attrs, encoding) 983 if encoding is _default: 984 encoding = copy.copy(self._encoding) --> 985 return type(self)(dims, data, attrs, encoding, fastpath=True)

File /opt/conda/lib/python3.9/site-packages/xarray/core/variable.py:2720, in IndexVariable.init(self, dims, data, attrs, encoding, fastpath) 2718 super().init(dims, data, attrs, encoding, fastpath) 2719 if self.ndim != 1: -> 2720 raise ValueError(f"{type(self).name} objects must be 1-dimensional") 2722 # Unlike in Variable, always eagerly load values into memory 2723 if not isinstance(self._data, PandasIndexingAdapter):

ValueError: IndexVariable objects must be 1-dimensional ```

What did you expect to happen?

Please see code below

With xarray:2022.03.0, code runs well

Minimal Complete Verifiable Example

```Python import xarray as xr import numpy as np

x = np.concatenate((np.repeat(np.nan,4), np.repeat(1,2))).reshape(3, 2).transpose() x = xr.DataArray( x, coords = { 'composite_id': ['s00', 's10'], 'sub_id': ('composite_id', ['0', '1']), 'last_j': ('composite_id', [100, 111]), 'j': [-2,-1,0] }, dims= ['composite_id', 'j'] )

y = x y = y.stack({'multi': ['composite_id', 'j']}) y = y.dropna('multi') y = y.assign_coords(day=y.j + y.last_j) y = y.set_index(multi=['sub_id', 'last_j'])

y = y.unstack() ```

MVCE confirmation

  • [X] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
  • [X] Complete example — the example is self-contained, including all data and the text of any traceback.
  • [X] Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
  • [x] New issue — a search of GitHub Issues suggests this is not a duplicate.

Relevant log output

No response

Anything else we need to know?

No response

Environment

Not working environment with xarray 2022.06.0

INSTALLED VERSIONS ------------------ commit: None python: 3.9.12 | packaged by conda-forge | (main, Mar 24 2022, 23:51:20) [GCC 10.3.0] python-bits: 64 OS: Linux OS-release: 5.10.104-linuxkit machine: aarch64 processor: aarch64 byteorder: little LC_ALL: en_US.UTF-8 LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: None libnetcdf: None xarray: 2022.6.0 pandas: 1.4.3 numpy: 1.23.2 scipy: None netCDF4: None pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: None distributed: None matplotlib: None cartopy: None seaborn: None numbagg: None fsspec: None cupy: None pint: None sparse: None flox: None numpy_groupies: None setuptools: 62.1.0 pip: 22.0.4 conda: 4.12.0 pytest: None IPython: 8.3.0 sphinx: None /opt/conda/lib/python3.9/site-packages/_distutils_hack/__init__.py:30: UserWarning: Setuptools is replacing distutils. warnings.warn("Setuptools is replacing distutils.")

Working environment with xarray 2022.03.0

INSTALLED VERSIONS ------------------ commit: None python: 3.9.12 | packaged by conda-forge | (main, Mar 24 2022, 23:51:20) [GCC 10.3.0] python-bits: 64 OS: Linux OS-release: 5.10.104-linuxkit machine: aarch64 processor: aarch64 byteorder: little LC_ALL: en_US.UTF-8 LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: None libnetcdf: None xarray: 2022.3.0 pandas: 1.4.3 numpy: 1.23.2 scipy: None netCDF4: None pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: None distributed: None matplotlib: None cartopy: None seaborn: None numbagg: None fsspec: None cupy: None pint: None sparse: None setuptools: 62.1.0 pip: 22.0.4 conda: 4.12.0 pytest: None IPython: 8.3.0 sphinx: None /opt/conda/lib/python3.9/site-packages/_distutils_hack/__init__.py:30: UserWarning: Setuptools is replacing distutils. warnings.warn("Setuptools is replacing distutils.")
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6969/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 92.043ms · About: xarray-datasette