issues
1 row where user = 11075246 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1402002645 | I_kwDOAMm_X85TkNzV | 7146 | Segfault writing large netcdf files to s3fs | d1mach 11075246 | closed | 0 | 17 | 2022-10-08T16:56:31Z | 2024-04-28T20:11:59Z | 2024-04-28T20:11:59Z | NONE | What happened?It seems netcdf4 does not work well currently with Here is an example
The output with ``` There are 1 HDF5 objects open! Report: open objects on 72057594037927936 Segmentation fault (core dumped) ``` I have tried the other engine that handles NETCDF4 in xarray with A quick workaround seems to be to use the local filesystem to write the NetCDF file and then move the complete file to S3.
What did you expect to happen?With NTIMES=24 I am getting a file Minimal Complete Verifiable Example
MVCE confirmation
Relevant log output```Python There are 1 HDF5 objects open! Report: open objects on 72057594037927936 Segmentation fault (core dumped) ``` Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.8.3 | packaged by conda-forge | (default, Jun 1 2020, 17:43:00)
[GCC 7.5.0]
python-bits: 64
OS: Linux
OS-release: 5.4.0-26-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: None
LOCALE: en_US.UTF-8
libhdf5: 1.10.6
libnetcdf: 4.7.4
xarray: 0.16.1
pandas: 1.1.3
numpy: 1.19.1
scipy: 1.5.2
netCDF4: 1.5.4
pydap: None
h5netcdf: 1.0.2
h5py: 3.1.0
Nio: None
zarr: None
cftime: 1.2.1
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: 2.30.0
distributed: None
matplotlib: 3.3.1
cartopy: None
seaborn: None
numbagg: None
pint: None
setuptools: 50.3.0.post20201006
pip: 20.2.3
conda: 22.9.0
pytest: 6.1.1
IPython: 7.18.1
sphinx: None
|
{
"url": "https://api.github.com/repos/pydata/xarray/issues/7146/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);