issues
1 row where type = "pull" and user = 1270651 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 467771005 | MDExOlB1bGxSZXF1ZXN0Mjk3MzUwNzYy | 3117 | Support for __array_function__ implementers (sparse arrays) [WIP] | nvictus 1270651 | closed | 0 | 17 | 2019-07-13T22:05:57Z | 2019-08-08T16:27:09Z | 2019-08-05T18:44:44Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/3117 | Doing a SciPy sprint. Working towards #1375 Together with https://github.com/pydata/sparse/pull/261, it seems to work.
|
{
"url": "https://api.github.com/repos/pydata/xarray/issues/3117/reactions",
"total_count": 7,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 5,
"confused": 0,
"heart": 2,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);