issues
3 rows where type = "issue" and user = 56925856 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
786839234 | MDU6SXNzdWU3ODY4MzkyMzQ= | 4816 | Possible bug with da.interp_like() | AndrewILWilliams 56925856 | closed | 0 | 1 | 2021-01-15T11:54:50Z | 2021-01-15T12:17:18Z | 2021-01-15T12:17:18Z | CONTRIBUTOR | What happened:
When interpolating a multidimensional array, I used the What you expected to happen:
However, this did not work and the array was filled with However, as far as I can tell, in this context I might be misunderstanding something here, but if not then I think there might be a bug? Happy to be corrected if I've misunderstood the docs! Minimal Complete Verifiable Example: ```python Put your MCVE code hereimport xarray as xr import numpy as np da = xr.DataArray( np.array(([1,2,3,4,0],[1,2,3,9,0])), dims=["x", "y"], coords={"x": [0,1],"y": [0,1,2,3,4]} ) da2 = xr.DataArray( np.array(([2,3,0,4,5,6],[2,3,0,4,5,6],[2,3,0,4,5,6])), dims=["x", "y"], coords={"x": [0,1,2],"y": [0,1,2,3,4,5]} ) print(da.interp_like(da2)) <xarray.DataArray (x: 3, y: 6)> array([[ 1., 2., 3., 4., 0., nan], [ 1., 2., 3., 9., 0., nan], [nan, nan, nan, nan, nan, nan]]) Coordinates: * x (x) int64 0 1 2 * y (y) int64 0 1 2 3 4 5 print(da.interp_like(da2, kwargs={'fill_value':None})) <xarray.DataArray (x: 3, y: 6)> array([[ 1., 2., 3., 4., 0., nan], [ 1., 2., 3., 9., 0., nan], [nan, nan, nan, nan, nan, nan]]) Coordinates: * x (x) int64 0 1 2 * y (y) int64 0 1 2 3 4 5 print(da.interp_like(da2, kwargs={'fill_value':'extrapolate'})) <xarray.DataArray (x: 3, y: 6)> array([[ 1., 2., 3., 4., 0., -4.], [ 1., 2., 3., 9., 0., -9.], [ 1., 2., 3., 14., 0., -14.]]) Coordinates: * x (x) int64 0 1 2 * y (y) int64 0 1 2 3 4 5 ``` Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.6.12 |Anaconda, Inc.| (default, Sep 8 2020, 23:10:56) [GCC 7.3.0] python-bits: 64 OS: Linux OS-release: 3.10.0-1127.19.1.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: en_GB.UTF-8 libhdf5: 1.10.5 libnetcdf: 4.6.2 xarray: 0.16.1 pandas: 1.1.5 numpy: 1.19.2 scipy: 1.5.2 netCDF4: 1.5.1.2 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.3.0 nc_time_axis: None PseudoNetCDF: None rasterio: 1.1.8 cfgrib: None iris: None bottleneck: 1.3.2 dask: 2.30.0 distributed: 2.30.1 matplotlib: 3.3.3 cartopy: 0.18.0 seaborn: None numbagg: None pint: None setuptools: 51.0.0.post20201207 pip: 20.3.3 conda: None pytest: None IPython: 7.16.1 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4816/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
617476316 | MDU6SXNzdWU2MTc0NzYzMTY= | 4055 | Automatic chunking of arrays ? | AndrewILWilliams 56925856 | closed | 0 | 11 | 2020-05-13T14:02:41Z | 2020-05-25T19:23:45Z | 2020-05-25T19:23:45Z | CONTRIBUTOR | Hi there, Hopefully this turns out to be a basic issue, but I was wondering why the I get the impression that the dask method automatically tries to prevent the issues of "too many chunks" or "too few chunks" which can sometimes happen when choosing chunk sizes automatically. If so, it would maybe be a useful thing to include in future versions? Happy to be corrected if I've misunderstood something here though, still getting my head around how the dask/xarray compatibility really works... Cheers! |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4055/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
568378007 | MDU6SXNzdWU1NjgzNzgwMDc= | 3784 | Function for regressing/correlating multiple fields? | AndrewILWilliams 56925856 | closed | 0 | 6 | 2020-02-20T15:24:14Z | 2020-05-25T16:55:33Z | 2020-05-25T16:55:33Z | CONTRIBUTOR | I came across this StackOverflow thread about applying linear regression across multi-dimensional arrays and there were some very efficient, xarray-based solutions suggested to the OP which leveraged vectorized operations. I was wondering if there was any interest in adding a function like this to future releases of xarray? It seems like a very neat and useful functionality to have, and not just for meteorological applications! Most answers draw from this blog post: https://hrishichandanpurkar.blogspot.com/2017/09/vectorized-functions-for-correlation.html |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3784/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);