home / github

Menu
  • Search all tables
  • GraphQL API

issues

Table actions
  • GraphQL API for issues

1 row where type = "issue" and user = 5384661 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date)

type 1

  • issue · 1 ✖

state 1

  • closed 1

repo 1

  • xarray 1
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
156857895 MDU6SXNzdWUxNTY4NTc4OTU= 861 Bug in arithmetic operations on DataArray objects whose dimensions are numpy structured arrays or recarrays maciekswat 5384661 closed 0     3 2016-05-25T21:46:38Z 2016-08-11T04:20:33Z 2016-08-11T04:20:33Z CONTRIBUTOR      

The following code will not run with current version of the xarray

``` import numpy as np import xarray as xr p_data = np.array([('John', 180), ('Stacy', 150), ('Dick',200)], dtype=[('name', '|S256'), ('height', int)]) p_data_1 = np.array([('John', 180), ('Stacy', 150), ('Dick',200)], dtype=[('name', '|S256'), ('height', int)]) weights_0 = xr.DataArray([80,56,120], dims=['participant'], coords={'participant':p_data}) weights_1 = xr.DataArray([81,52,115], dims=['participant'], coords={'participant':p_data_1})

print weights_1-weights_0 ```

It will crash with the error

ValueError: index 'participant' not aligned

The real cause is the isnull function from pandas that throws TypeError exception when called on e.g. numpy recarray or numpy structured array

A quick fix involves replacing array_equiv function in xarray.core.ops.py with the following implementation

``` def array_equiv(arr1, arr2): """Like np.array_equal, but also allows values to be NaN in both arrays """ arr1, arr2 = as_like_arrays(arr1, arr2) if arr1.shape != arr2.shape: return False

flag_array = (arr1 == arr2)

# isnull fcn from pandas will throw TypeError when run on numpy structured array
# therefore for dims that are np structured arrays we skip testing for nan
try:

    flag_array |= (isnull(arr1) & isnull(arr2))

except TypeError:
    pass

return bool(flag_array.all())

```

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/861/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 20.585ms · About: xarray-datasette