issues
5 rows where type = "issue" and user = 4441338 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1664193419 | I_kwDOAMm_X85jMZOL | 7748 | diff('non existing dimension') does not raise exception | LunarLanding 4441338 | open | 0 | 4 | 2023-04-12T09:29:58Z | 2024-04-21T22:31:37Z | NONE | What happened?Calling xr.DataArray.diff with a non-existing dimension does not raise an exception. What did you expect to happen?An exception to be raised. Minimal Complete Verifiable Example
MVCE confirmation
Relevant log outputNo response Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.9 | packaged by conda-forge | (main, Feb 2 2023, 20:20:04) [GCC 11.3.0]
python-bits: 64
OS: Linux
OS-release: 5.10.0-21-amd64
machine: x86_64
processor:
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2023.3.0
pandas: 1.5.3
numpy: 1.23.5
scipy: 1.10.1
netCDF4: 1.6.2
pydap: None
h5netcdf: 1.1.0
h5py: 3.8.0
Nio: None
zarr: 2.14.2
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: 2023.3.1
distributed: 2023.3.1
matplotlib: 3.7.1
cartopy: None
seaborn: 0.12.2
numbagg: None
fsspec: 2023.3.0
cupy: None
pint: None
sparse: 0.14.0
flox: 0.6.9
numpy_groupies: 0.9.20
setuptools: 67.6.0
pip: 23.0.1
conda: 23.1.0
pytest: 7.2.2
mypy: 1.1.1
IPython: 8.11.0
sphinx: 6.1.3
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7748/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1050937380 | I_kwDOAMm_X84-pAgk | 5975 | Typing of dim in concat.py does not include Hashable | LunarLanding 4441338 | closed | 0 | 2 | 2021-11-11T12:38:44Z | 2022-05-17T20:53:07Z | 2022-05-17T20:53:07Z | NONE | Arent' dims supposed to be any Hashable? In other xarray methods they generally are. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5975/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1195097342 | I_kwDOAMm_X85HO7z- | 6449 | query on coords only dataset fails | LunarLanding 4441338 | open | 0 | 1 | 2022-04-06T19:46:12Z | 2022-04-14T22:16:00Z | NONE | What happened?I make a dataset with some variables, and make them all coordinates. Then I try to query on the dataset. Error ensues. What did you expect to happen?No error. Minimal Complete Verifiable Example```Python import xarray as xr import pandas as pd x = xr.Dataset.from_dataframe(pd.DataFrame(data=[[0,1],[2,3]],columns=['a','b'])) display(x.query(index='a==0')) #finey = x.set_coords(['a','b']) display(y) #finey.query(index='a==0') #error ``` Relevant log output```PythonKeyError Traceback (most recent call last) ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/scope.py in resolve(self, key, is_local) 199 assert not is_local and not self.has_resolvers --> 200 return self.scope[key] 201 except KeyError: ~/miniconda3/lib/python3.9/collections/init.py in getitem(self, key) 940 pass --> 941 return self.missing(key) # support subclasses that define missing 942 ~/miniconda3/lib/python3.9/collections/init.py in missing(self, key) 932 def missing(self, key): --> 933 raise KeyError(key) 934 KeyError: 'a' During handling of the above exception, another exception occurred: KeyError Traceback (most recent call last) ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/scope.py in resolve(self, key, is_local) 205 # e.g., df[df > 0] --> 206 return self.temps[key] 207 except KeyError as err: KeyError: 'a' The above exception was the direct cause of the following exception: UndefinedVariableError Traceback (most recent call last) /tmp/ipykernel_23733/4091370488.py in <cell line: 7>() 5 y = x.set_coords(['a','b']) 6 display(y) ----> 7 y.query(index='a==0') ~/miniconda3/lib/python3.9/site-packages/xarray/core/dataset.py in query(self, queries, parser, engine, missing_dims, **queries_kwargs) 7605 7606 # evaluate the queries to create the indexers -> 7607 indexers = { 7608 dim: pd.eval(expr, resolvers=[self], parser=parser, engine=engine) 7609 for dim, expr in queries.items() ~/miniconda3/lib/python3.9/site-packages/xarray/core/dataset.py in <dictcomp>(.0) 7606 # evaluate the queries to create the indexers 7607 indexers = { -> 7608 dim: pd.eval(expr, resolvers=[self], parser=parser, engine=engine) 7609 for dim, expr in queries.items() 7610 } ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/eval.py in eval(expr, parser, engine, truediv, local_dict, global_dict, resolvers, level, target, inplace) 348 ) 349 --> 350 parsed_expr = Expr(expr, engine=engine, parser=parser, env=env) 351 352 # construct the engine and evaluate the parsed expression ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/expr.py in init(self, expr, engine, parser, env, level) 809 self.parser = parser 810 self._visitor = PARSERSparser --> 811 self.terms = self.parse() 812 813 @property ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/expr.py in parse(self) 828 Parse an expression. 829 """ --> 830 return self._visitor.visit(self.expr) 831 832 @property ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/expr.py in visit(self, node, kwargs) 413 method = "visit_" + type(node).name 414 visitor = getattr(self, method) --> 415 return visitor(node, kwargs) 416 417 def visit_Module(self, node, **kwargs): ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/expr.py in visit_Module(self, node, kwargs) 419 raise SyntaxError("only a single expression is allowed") 420 expr = node.body[0] --> 421 return self.visit(expr, kwargs) 422 423 def visit_Expr(self, node, **kwargs): ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/expr.py in visit(self, node, kwargs) 413 method = "visit_" + type(node).name 414 visitor = getattr(self, method) --> 415 return visitor(node, kwargs) 416 417 def visit_Module(self, node, **kwargs): ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/expr.py in visit_Expr(self, node, kwargs) 422 423 def visit_Expr(self, node, kwargs): --> 424 return self.visit(node.value, **kwargs) 425 426 def _rewrite_membership_op(self, node, left, right): ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/expr.py in visit(self, node, kwargs) 413 method = "visit_" + type(node).name 414 visitor = getattr(self, method) --> 415 return visitor(node, kwargs) 416 417 def visit_Module(self, node, **kwargs): ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/expr.py in visit_Compare(self, node, **kwargs) 721 op = self.translate_In(ops[0]) 722 binop = ast.BinOp(op=op, left=node.left, right=comps[0]) --> 723 return self.visit(binop) 724 725 # recursive case: we have a chained comparison, a CMP b CMP c, etc. ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/expr.py in visit(self, node, kwargs) 413 method = "visit_" + type(node).name 414 visitor = getattr(self, method) --> 415 return visitor(node, kwargs) 416 417 def visit_Module(self, node, **kwargs): ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/expr.py in visit_BinOp(self, node, kwargs) 534 535 def visit_BinOp(self, node, kwargs): --> 536 op, op_class, left, right = self._maybe_transform_eq_ne(node) 537 left, right = self._maybe_downcast_constants(left, right) 538 return self._maybe_evaluate_binop(op, op_class, left, right) ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/expr.py in _maybe_transform_eq_ne(self, node, left, right) 454 def _maybe_transform_eq_ne(self, node, left=None, right=None): 455 if left is None: --> 456 left = self.visit(node.left, side="left") 457 if right is None: 458 right = self.visit(node.right, side="right") ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/expr.py in visit(self, node, kwargs) 413 method = "visit_" + type(node).name 414 visitor = getattr(self, method) --> 415 return visitor(node, kwargs) 416 417 def visit_Module(self, node, **kwargs): ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/expr.py in visit_Name(self, node, kwargs) 547 548 def visit_Name(self, node, kwargs): --> 549 return self.term_type(node.id, self.env, kwargs) 550 551 def visit_NameConstant(self, node, kwargs): ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/ops.py in init(self, name, env, side, encoding) 96 tname = str(name) 97 self.is_local = tname.startswith(LOCAL_TAG) or tname in DEFAULT_GLOBALS ---> 98 self._value = self._resolve_name() 99 self.encoding = encoding 100 ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/ops.py in _resolve_name(self) 113 114 def _resolve_name(self): --> 115 res = self.env.resolve(self.local_name, is_local=self.is_local) 116 self.update(res) 117 ~/miniconda3/lib/python3.9/site-packages/pandas/core/computation/scope.py in resolve(self, key, is_local) 209 from pandas.core.computation.ops import UndefinedVariableError 210 --> 211 raise UndefinedVariableError(key, is_local) from err 212 213 def swapkey(self, old_key: str, new_key: str, new_value=None) -> None: UndefinedVariableError: name 'a' is not defined ``` Anything else we need to know?If the dataset has one data variable, then the error does not happen. EnvironmentINSTALLED VERSIONScommit: None python: 3.9.12 | packaged by conda-forge | (main, Mar 24 2022, 23:25:59) [GCC 10.3.0] python-bits: 64 OS: Linux OS-release: 4.19.0-19-amd64 machine: x86_64 processor: byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.12.1 libnetcdf: 4.8.1 xarray: 2022.3.0 pandas: 1.4.1 numpy: 1.22.3 scipy: 1.8.0 netCDF4: 1.5.8 pydap: None h5netcdf: 1.0.0 h5py: 3.6.0 Nio: None zarr: 2.11.1 cftime: 1.5.2 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2022.03.0 distributed: 2022.3.0 matplotlib: 3.5.1 cartopy: None seaborn: 0.11.2 numbagg: None fsspec: 2022.02.0 cupy: None pint: 0.18 sparse: 0.13.0 setuptools: 59.8.0 pip: 22.0.4 conda: 4.12.0 pytest: 7.1.1 IPython: 7.32.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6449/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
869786882 | MDU6SXNzdWU4Njk3ODY4ODI= | 5228 | sel(dim=slice(a,b,c)) only accepts integers for c, uses c as isel does | LunarLanding 4441338 | closed | 0 | 1 | 2021-04-28T10:22:40Z | 2021-04-28T10:47:00Z | 2021-04-28T10:46:59Z | NONE | Trying to slice with sel using label delta values as interval, i.e. What happened: The label delta value is not accepted. What you expected to happen:
Selecting c-spaced samples from the DataArray Minimal Complete Verifiable Example: ```python dim0_n = 100 d = xr.DataArray(np.arange(dim0_n),coords={'dim0':np.linspace(0,1,num=dim0_n)},dims=('dim0',)) d.sel(dim0=slice(None,None,0.1)) expected 0,10,20,...,90instead get a TypeError: 'float' object cannot be interpreted as an integer(full traceback below)``` Full traceback``` TypeError Traceback (most recent call last) <ipython-input-43-9eb3e3c8bbe4> in <module> 1 dim0_n = 100 2 d = xr.DataArray(np.arange(dim0_n),coords={'dim0':np.linspace(0,1,num=dim0_n)},dims=('dim0',)) ----> 3 d.sel(dim0=slice(None,None,0.1)) 4 # expected 0,10,20,...,90 5 # instead get a TypeError (traceback below) ~/miniconda3/lib/python3.9/site-packages/xarray/core/dataarray.py in sel(self, indexers, method, tolerance, drop, **indexers_kwargs) 1252 Dimensions without coordinates: points 1253 """ -> 1254 ds = self._to_temp_dataset().sel( 1255 indexers=indexers, 1256 drop=drop, ~/miniconda3/lib/python3.9/site-packages/xarray/core/dataset.py in sel(self, indexers, method, tolerance, drop, **indexers_kwargs) 2231 self, indexers=indexers, method=method, tolerance=tolerance 2232 ) -> 2233 result = self.isel(indexers=pos_indexers, drop=drop) 2234 return result._overwrite_indexes(new_indexes) 2235 ~/miniconda3/lib/python3.9/site-packages/xarray/core/dataset.py in isel(self, indexers, drop, missing_dims, **indexers_kwargs) 2093 var_indexers = {k: v for k, v in indexers.items() if k in var_value.dims} 2094 if var_indexers: -> 2095 var_value = var_value.isel(var_indexers) 2096 if drop and var_value.ndim == 0 and var_name in coord_names: 2097 coord_names.remove(var_name) ~/miniconda3/lib/python3.9/site-packages/xarray/core/variable.py in isel(self, indexers, missing_dims, **indexers_kwargs) 1164 1165 key = tuple(indexers.get(dim, slice(None)) for dim in self.dims) -> 1166 return self[key] 1167 1168 def squeeze(self, dim=None): ~/miniconda3/lib/python3.9/site-packages/xarray/core/variable.py in __getitem__(self, key) 808 array `x.values` directly. 809 """ --> 810 dims, indexer, new_order = self._broadcast_indexes(key) 811 data = as_indexable(self._data)[indexer] 812 if new_order: ~/miniconda3/lib/python3.9/site-packages/xarray/core/variable.py in _broadcast_indexes(self, key) 647 648 if all(isinstance(k, BASIC_INDEXING_TYPES) for k in key): --> 649 return self._broadcast_indexes_basic(key) 650 651 self._validate_indexers(key) ~/miniconda3/lib/python3.9/site-packages/xarray/core/variable.py in _broadcast_indexes_basic(self, key) 675 dim for k, dim in zip(key, self.dims) if not isinstance(k, integer_types) 676 ) --> 677 return dims, BasicIndexer(key), None 678 679 def _validate_indexers(self, key): ~/miniconda3/lib/python3.9/site-packages/xarray/core/indexing.py in __init__(self, key) 382 k = int(k) 383 elif isinstance(k, slice): --> 384 k = as_integer_slice(k) 385 else: 386 raise TypeError( ~/miniconda3/lib/python3.9/site-packages/xarray/core/indexing.py in as_integer_slice(value) 359 start = as_integer_or_none(value.start) 360 stop = as_integer_or_none(value.stop) --> 361 step = as_integer_or_none(value.step) 362 return slice(start, stop, step) 363 ~/miniconda3/lib/python3.9/site-packages/xarray/core/indexing.py in as_integer_or_none(value) 353 354 def as_integer_or_none(value): --> 355 return None if value is None else operator.index(value) 356 357 TypeError: 'float' object cannot be interpreted as an integer ``` Anything else we need to know?: I think a warning in the documentation would be nice. It happened that I was giving integer values to c and xarray was subsetting datasets in an entirely different way that the one intended. It took noticing a downstream effect to find this behavior. Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.9.2 | packaged by conda-forge | (default, Feb 21 2021, 05:02:46) [GCC 9.3.0] python-bits: 64 OS: Linux OS-release: 3.10.0-1160.11.1.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: None LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.17.0 pandas: 1.2.4 numpy: 1.20.2 scipy: 1.6.2 netCDF4: 1.5.6 pydap: None h5netcdf: 0.11.0 h5py: 3.1.0 Nio: None zarr: 2.8.1 cftime: 1.4.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2021.04.1 distributed: 2021.04.1 matplotlib: 3.3.4 cartopy: None seaborn: 0.11.1 numbagg: None pint: None setuptools: 51.0.0.post20201207 pip: 21.1 conda: 4.10.1 pytest: None IPython: 7.22.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5228/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
831148018 | MDU6SXNzdWU4MzExNDgwMTg= | 5034 | output_dtypes needs to be a tuple, not a sequence | LunarLanding 4441338 | closed | 0 | 4 | 2021-03-14T12:47:49Z | 2021-04-19T19:33:14Z | 2021-04-19T19:33:14Z | NONE | If a sequence, I get MVE ( WIP, will finish later ) ``` p,v are chunked in 'time'M is a positive integermsd_w_one_mol takes two args, has two outputsm,w = xr.apply_ufunc( msd_w_one_mol, p,v, input_core_dims=[('time','spatial'),('time',)], output_core_dims=[('interval',),('interval',)], vectorize=True, dask='parallelized', dask_gufunc_kwargs={ 'output_sizes':{'interval':M}, 'allow_rechunk':True, 'meta':(np.empty((M,),dtype=p.dtype),np.empty((M,),dtype=np.min_scalar_type(M)))'output_dtypes':[p.dtype,np.min_scalar_type(M)],
) ``` Stack Trace: ``` ValueError Traceback (most recent call last) ~/dotfiles/conda/base/.conda/lib/python3.8/site-packages/dask/array/gufunc.py in apply_gufunc(func, signature, args, kwargs) 429 try: --> 430 tmp = blockwise( # First try to compute meta 431 func, loop_output_dims, arginds, concatenate=True, **kwargs ~/dotfiles/conda/base/.conda/lib/python3.8/site-packages/dask/array/blockwise.py in blockwise(func, out_ind, name, token, dtype, adjust_chunks, new_axes, align_arrays, concatenate, meta, args, kwargs) 278 --> 279 meta = compute_meta(func, dtype, args[::2], **kwargs) 280 return new_da_object(graph, out, chunks, meta=meta, dtype=dtype) ~/dotfiles/conda/base/.conda/lib/python3.8/site-packages/dask/array/utils.py in compute_meta(func, _dtype, args, kwargs) 138 if isinstance(func, np.vectorize): --> 139 meta = func(args_meta) 140 else: ~/dotfiles/conda/base/.conda/lib/python3.8/site-packages/numpy/lib/function_base.py in call(self, args, *kwargs) 2112 -> 2113 return self._vectorize_call(func=func, args=vargs) 2114 ~/dotfiles/conda/base/.conda/lib/python3.8/site-packages/numpy/lib/function_base.py in _vectorize_call(self, func, args) 2186 if self.signature is not None: -> 2187 res = self._vectorize_call_with_signature(func, args) 2188 elif not args: ~/dotfiles/conda/base/.conda/lib/python3.8/site-packages/numpy/lib/function_base.py in _vectorize_call_with_signature(self, func, args)
2260 for dim in dims):
-> 2261 raise ValueError('cannot call ValueError: cannot call During handling of the above exception, another exception occurred: TypeError Traceback (most recent call last) <ipython-input-119-a2a3ac7df12d> in <module> ----> 1 m,w = xr.apply_ufunc( 2 msd_w_one_mol, 3 p,v, 4 input_core_dims=[('time','spatial'),('time',)], 5 output_core_dims=[('interval',),('interval',)], ~/dotfiles/conda/base/.conda/lib/python3.8/site-packages/xarray/core/computation.py in apply_ufunc(func, input_core_dims, output_core_dims, exclude_dims, vectorize, join, dataset_join, dataset_fill_value, keep_attrs, kwargs, dask, output_dtypes, output_sizes, meta, dask_gufunc_kwargs, args) 1126 # feed DataArray apply_variable_ufunc through apply_dataarray_vfunc 1127 elif any(isinstance(a, DataArray) for a in args): -> 1128 return apply_dataarray_vfunc( 1129 variables_vfunc, 1130 args, ~/dotfiles/conda/base/.conda/lib/python3.8/site-packages/xarray/core/computation.py in apply_dataarray_vfunc(func, signature, join, exclude_dims, keep_attrs, args) 269 270 data_vars = [getattr(a, "variable", a) for a in args] --> 271 result_var = func(data_vars) 272 273 if signature.num_outputs > 1: ~/dotfiles/conda/base/.conda/lib/python3.8/site-packages/xarray/core/computation.py in apply_variable_ufunc(func, signature, exclude_dims, dask, output_dtypes, vectorize, keep_attrs, dask_gufunc_kwargs, args) 722 ) 723 --> 724 result_data = func(input_data) 725 726 if signature.num_outputs == 1: ~/dotfiles/conda/base/.conda/lib/python3.8/site-packages/xarray/core/computation.py in func(*arrays) 690 import dask.array as da 691 --> 692 res = da.apply_gufunc( 693 numpy_func, 694 signature.to_gufunc_string(exclude_dims), ~/dotfiles/conda/base/.conda/lib/python3.8/site-packages/dask/array/gufunc.py in apply_gufunc(func, signature, args, *kwargs) 441 ) 442 else: --> 443 meta = tuple( 444 meta_from_array(sample, dtype=odt) 445 for ocd, odt in zip((output_coredimss,), (output_dtypes,)) ~/dotfiles/conda/base/.conda/lib/python3.8/site-packages/dask/array/gufunc.py in <genexpr>(.0) 442 else: 443 meta = tuple( --> 444 meta_from_array(sample, dtype=odt) 445 for ocd, odt in zip((output_coredimss,), (output_dtypes,)) 446 ) ~/dotfiles/conda/base/.conda/lib/python3.8/site-packages/dask/array/utils.py in meta_from_array(x, ndim, dtype) 104 meta = np.array(meta) 105 --> 106 if dtype and meta.dtype != dtype: 107 try: 108 meta = meta.astype(dtype) TypeError: Field elements must be 2- or 3-tuples, got 'dtype('float64')' ``` Preliminary investigation using %debug: ```
ipdb> print(dtype) [dtype('float64'), dtype('uint16')] ipdb> print(meta.dtype) float64 ipdb> print(dtype) [dtype('float64'), dtype('uint16')] ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5034/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);