issues
4 rows where type = "issue" and user = 25231875 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1445905299 | I_kwDOAMm_X85WLsOT | 7282 | groupby and mean on a MultiIndex level raises ValueError | jjpr-mit 25231875 | closed | 0 | 4 | 2022-11-11T19:15:58Z | 2023-10-30T09:18:54Z | 2023-08-31T03:50:33Z | NONE | What happened?After using What did you expect to happen?Apply mean to groups, no error. Minimal Complete Verifiable Example
MVCE confirmation
Relevant log output
Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.7 (main, Sep 13 2022, 14:31:33) [GCC 10.2.1 20210110]
python-bits: 64
OS: Linux
OS-release: 5.15.49-linuxkit
machine: x86_64
processor:
byteorder: little
LC_ALL: None
LANG: C.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: None
libnetcdf: None
xarray: 2022.11.0
pandas: 1.5.1
numpy: 1.23.4
scipy: None
netCDF4: None
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: None
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: None
distributed: None
matplotlib: None
cartopy: None
seaborn: None
numbagg: None
fsspec: None
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 63.2.0
pip: 22.2.2
conda: None
pytest: None
IPython: None
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7282/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
257070215 | MDU6SXNzdWUyNTcwNzAyMTU= | 1569 | Grouping with multiple levels | jjpr-mit 25231875 | closed | 0 | 6 | 2017-09-12T14:46:12Z | 2022-04-09T15:25:07Z | 2022-04-09T15:25:06Z | NONE | http://xarray.pydata.org/en/stable/groupby.html says:
but when I supply the TypeError: groupby() got an unexpected keyword argument 'level' ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1569/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
255597950 | MDU6SXNzdWUyNTU1OTc5NTA= | 1554 | TypeError on DataArray.stack() if any of the dimensions to be stacked has a MultiIndex | jjpr-mit 25231875 | open | 0 | 3 | 2017-09-06T13:09:30Z | 2019-04-05T18:35:12Z | NONE | If I call .stack() on a DataArray, and any of the dimensions to be stacked already has a MultiIndex on it, I get an error:
Maybe it doesn't make sense for .stack() to work on an existing MultiIndex, but that should probably be documented, and perhaps throw a more informative error. Here's the full trace: ``` Traceback (most recent call last) <ipython-input-6-ce81ac38d71e> in <module>() ----> 1 xr_one_flat_stacked = xr_one_flat.stack(alphanumeric=("letters", "numbers")) 2 xr_one_flat_stacked /Users/jjpr/anaconda/envs/dldata/lib/python2.7/site-packages/xarray/core/dataarray.pyc in stack(self, dimensions) 1027 DataArray.unstack 1028 """ -> 1029 ds = self._to_temp_dataset().stack(dimensions) 1030 return self._from_temp_dataset(ds) 1031 /Users/jjpr/anaconda/envs/dldata/lib/python2.7/site-packages/xarray/core/dataset.pyc in stack(self, **dimensions) 1832 result = self 1833 for new_dim, dims in dimensions.items(): -> 1834 result = result._stack_once(dims, new_dim) 1835 return result 1836 /Users/jjpr/anaconda/envs/dldata/lib/python2.7/site-packages/xarray/core/dataset.pyc in _stack_once(self, dims, new_dim) 1801 else level 1802 for level in levels] -> 1803 idx = utils.multiindex_from_product_levels(levels, names=dims) 1804 variables[new_dim] = IndexVariable(new_dim, idx) 1805 /Users/jjpr/anaconda/envs/dldata/lib/python2.7/site-packages/xarray/core/utils.pyc in multiindex_from_product_levels(levels, names) 79 indexing='ij') 80 labels = [x.ravel() for x in labels_mesh] ---> 81 return pd.MultiIndex(levels, labels, sortorder=0, names=names) 82 83 /Users/jjpr/anaconda/envs/dldata/lib/python2.7/site-packages/pandas/indexes/multi.pyc in new(cls, levels, labels, sortorder, names, copy, verify_integrity, _set_identity, name, **kwargs) 103 if names is not None: 104 # handles name validation --> 105 result._set_names(names) 106 107 if sortorder is not None: /Users/jjpr/anaconda/envs/dldata/lib/python2.7/site-packages/pandas/indexes/multi.pyc in _set_names(self, names, level, validate) 505 # set the name 506 for l, name in zip(level, names): --> 507 self.levels[l].rename(name, inplace=True) 508 509 names = property(fset=_set_names, fget=_get_names, /Users/jjpr/anaconda/envs/dldata/lib/python2.7/site-packages/pandas/indexes/base.pyc in set_names(self, names, level, inplace)
997
998 if not is_list_like(names) and level is None and self.nlevels > 1:
--> 999 raise TypeError("Must pass list-like as TypeError: Must pass list-like as |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1554/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
329438885 | MDU6SXNzdWUzMjk0Mzg4ODU= | 2215 | align() outer join returns DataArrays that are all NaNs | jjpr-mit 25231875 | closed | 0 | 10 | 2018-06-05T12:42:53Z | 2018-06-13T21:02:45Z | 2018-06-13T21:02:44Z | NONE | Code Sample, a copy-pastable example if possibleThe problem occurs for me in the midst of a data-processing pipeline that starts with some ~40MB netCDF files. I've tried to create pasteable code that reproduces the behavior from scratch, but I haven't succeeded. Problem descriptionI pass two DataArrays to The tuple of DataArrays returned by I've set breakpoints and delved into the code. On line 656 in Expected OutputA tuple of DataArrays which contain some non-NaN values. Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2215/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);