issues
2 rows where type = "issue" and user = 22566757 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1384465119 | I_kwDOAMm_X85ShULf | 7076 | Can't unstack concatenated DataArrays | DWesl 22566757 | open | 0 | 9 | 2022-09-24T00:50:09Z | 2023-02-21T17:11:35Z | CONTRIBUTOR | What happened?I had a collection of What did you expect to happen?I expected that concatenating the arrays then unstacking them would produce the same array as unstacking them then concatenating them, but with the possibility of saving the intermediate concatenated-but-still-stacked Minimal Complete Verifiable Example```Python import pandas as pd import xarray index = pd.MultiIndex.from_product([range(3), range(5)]) arr = xarray.DataArray.from_series(pd.Series(range(15), index=index)).stack(index0=["level_0", "level_1"]) arr.unstack("index0") arr2 = xarray.concat([arr, arr], dim="index2") arr2.unstack("index0") ``` MVCE confirmation
Relevant log output```Python <xarray.DataArray (level_0: 3, level_1: 5)> array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) Coordinates: * level_0 (level_0) int64 0 1 2 * level_1 (level_1) int64 0 1 2 3 4 Traceback (most recent call last): File "<stdin>", line 1, in <module> File "~/.conda/envs/plotting/lib/python3.10/site-packages/xarray/core/dataarray.py", line 2402, in unstack ds = self._to_temp_dataset().unstack(dim, fill_value, sparse) File "~/.conda/envs/plotting/lib/python3.10/site-packages/xarray/core/dataset.py", line 4618, in unstack raise ValueError( ValueError: cannot unstack dimensions that do not have exactly one multi-index: ('index0',) ``` Anything else we need to know?The eventual problem to which I wish to apply the solution has two stacked dimensions rather than one, but that's likely irrelevant. Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.6 | packaged by conda-forge | (main, Aug 22 2022, 20:35:26) [GCC 10.4.0]
python-bits: 64
OS: Linux
OS-release: 3.10.0-1160.76.1.el7.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.12.1
libnetcdf: 4.8.1
xarray: 2022.6.0
pandas: 1.4.2
numpy: 1.22.3
scipy: 1.8.0
netCDF4: 1.6.0
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.5.1.1
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: 3.2.1.post0
bottleneck: 1.3.5
dask: 2022.7.1
distributed: 2022.7.1
matplotlib: 3.5.1
cartopy: 0.20.3
seaborn: 0.12.0
numbagg: None
fsspec: 2022.5.0
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 61.3.1
pip: 22.0.4
conda: 4.14.0
pytest: 7.1.3
IPython: None
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7076/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
reopened | xarray 13221727 | issue | |||||||
1192449540 | I_kwDOAMm_X85HE1YE | 6439 | Unstacking the diagonals of a sequence of matrices raises ValueError: IndexVariable objects must be 1-dimensional | DWesl 22566757 | closed | 0 | 5 | 2022-04-05T00:09:55Z | 2022-05-02T19:05:19Z | 2022-05-02T19:00:47Z | CONTRIBUTOR | What happened?In my work, I produced a sequence of covariance matrices for a 2-D quantity. I wanted to extract the diagonal of the covariance matrices, then make that diagonal 2-D so I could plot it. I could unstack the 2-D dimensions in the sequence of covariance matrices without issue. I figured out how to extract the diagonal of the covariance matrices. Unstacking the diagonal using the same procedure raised a What did you expect to happen?I expected the sequence of one-dimensional diagonals to unstack into a sequence of two-dimensional fields so I could plot them with pcolormesh. I can make this happen by unstacking the two dimensions (producing a 5-D DataArray) and extracting the diagonals from that, but I don't see a reason it shouldn't work in the other order. Minimal Complete Verifiable Example```Python import numpy as np import xarray Working:test = xarray.DataArray( np.eye(12), dims=("dim0", "adj_dim0"), coords={ "dim0_0": (("dim0",), np.repeat(np.arange(3), 4)), "dim0_1": (("dim0",), np.tile(np.arange(4), 3)), }, ) unstacked = test.set_index(dim0=["dim0_0", "dim0_1"]).unstack("dim0") diag_index = xarray.DataArray(np.arange(test.shape[0]), dims=("diag",)) unstacked_diag = ( test.isel(dim0=diag_index, adj_dim0=diag_index) .set_index(diag=["dim0_0", "dim0_1"]) .unstack("diag") ) Not working:test = xarray.DataArray( dims=("dim1", "dim0", "adj_dim0"), data=np.tile(np.eye(12), (2, 1, 1)), coords={ "dim0": np.arange(12), "dim0_0": (("dim0",), np.repeat(np.arange(3), 4)), "dim0_1": (("dim0",), np.tile(np.arange(4), 3)), "adj_dim0": np.arange(12), "adj_dim0_0": (("adj_dim0",), np.repeat(np.arange(3), 4)), "adj_dim0_1": (("adj_dim0",), np.tile(np.arange(4), 3)), }, ) unstacked = test.set_index( dim0=["dim0_0", "dim0_1"], adj_dim0=["adj_dim0_0", "adj_dim0_1"] ).unstack(["dim0", "adj_dim0"]) diag_index0 = xarray.DataArray(np.arange(unstacked.shape[1]), dims=("diag_0",)) diag_index1 = xarray.DataArray(np.arange(unstacked.shape[2]), dims=("diag_1",)) unstacked_diag = unstacked.isel( dim0_0=diag_index0, dim0_1=diag_index1, adj_dim0_0=diag_index0, adj_dim0_1=diag_index1, ) diag_index = xarray.DataArray(np.arange(test.shape[1]), dims=("diag",)) test.isel(dim0=diag_index, adj_dim0=diag_index).set_index( diag=["dim0_0", "dim0_1"] ).unstack("diag") ``` Relevant log output
Anything else we need to know?No response EnvironmentINSTALLED VERSIONScommit: None python: 3.10.4 | packaged by conda-forge | (main, Mar 24 2022, 17:39:04) [GCC 10.3.0] python-bits: 64 OS: Linux OS-release: 3.10.0-1160.59.1.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.12.1 libnetcdf: 4.8.1 xarray: 2022.3.0 pandas: 1.4.2 numpy: 1.22.3 scipy: 1.8.0 netCDF4: 1.5.8 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.6.0 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: None distributed: None matplotlib: 3.5.1 cartopy: 0.20.2 seaborn: None numbagg: None fsspec: None cupy: None pint: None sparse: None setuptools: 61.3.1 pip: 22.0.4 conda: None pytest: None IPython: None sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6439/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);