issues
6 rows where type = "issue" and user = 221526 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1499473190 | I_kwDOAMm_X85ZYCUm | 7385 | Unexpected NaNs in broadcast | dopplershift 221526 | open | 0 | 4 | 2022-12-16T02:42:44Z | 2023-03-14T20:43:00Z | CONTRIBUTOR | What happened?When running the What did you expect to happen?No response Minimal Complete Verifiable Example```Python levs = np.array([100000, 85000]) a = xr.Dataset({'a': (('lev',), [1, 2])}, coords={'lev': levs}).to_array() b = xr.Dataset({'b': (('lev',), [3, 4])}, coords={'lev': levs}).to_array() broad_a, broad_b = xr.broadcast(a, b) print(broad_a) ``` MVCE confirmation
Relevant log output
Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.8 | packaged by conda-forge | (main, Nov 22 2022, 08:31:57) [Clang 14.0.6 ]
python-bits: 64
OS: Darwin
OS-release: 21.6.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2022.12.0
pandas: 1.5.2
numpy: 1.23.5
scipy: 1.9.3
netCDF4: 1.6.2
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: 2.13.3
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: 0.9.10.3
iris: None
bottleneck: 1.3.5
dask: 2022.6.1
distributed: 2022.6.1
matplotlib: 3.6.2
cartopy: 0.21.0
seaborn: None
numbagg: None
fsspec: 2022.11.0
cupy: None
pint: 0.20.1
sparse: None
flox: None
numpy_groupies: None
setuptools: 65.5.1
pip: 22.3.1
conda: None
pytest: 7.2.0
mypy: 0.991
IPython: 8.7.0
sphinx: 5.3.0
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7385/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1473329967 | I_kwDOAMm_X85X0Tsv | 7350 | Coordinate variable gains coordinate on subset | dopplershift 221526 | closed | 0 | 5 | 2022-12-02T19:18:14Z | 2022-12-05T22:56:30Z | 2022-12-05T22:56:30Z | CONTRIBUTOR | What happened?When subsetting a DataArray along a dimension down to a single item, the other coordinate variables gain this scalar coordinate. What did you expect to happen?Coordinate variables should not have their coordinates changed. Minimal Complete Verifiable Example```Python import numpy as np import xarray as xr lat = np.array([25, 35, 45]) lon = np.array([-105, -95, -85, -75]) time = np.array([0, 1]) data = np.arange(lat.size * lon.size * time.size) test_data = xr.DataArray(data.reshape((time.size, lat.size, lon.size)), coords=dict(lat=lat, lon=lon, time=time), dims=('time', 'lat', 'lon')) print(test_data.lat.coords) # Only 'lat' print(test_data.isel(time=0).lat.coords) # Has both 'lat' and 'time' pritn(test_data.isel(time=[0, 1]).lat.coords) # Only 'lat' ``` MVCE confirmation
Relevant log outputNo response Anything else we need to know?This occurs with both the latest 2022.11.0 release and current main. Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.8 | packaged by conda-forge | (main, Nov 22 2022, 08:31:57) [Clang 14.0.6 ]
python-bits: 64
OS: Darwin
OS-release: 21.6.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2022.11.0
pandas: 1.5.2
numpy: 1.23.5
scipy: 1.9.3
netCDF4: 1.6.2
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: 0.9.10.2
iris: None
bottleneck: 1.3.5
dask: 2022.6.1
distributed: 2022.6.1
matplotlib: 3.6.2
cartopy: 0.21.0
seaborn: None
numbagg: None
fsspec: 2022.11.0
cupy: None
pint: 0.20.1
sparse: None
flox: None
numpy_groupies: None
setuptools: 65.5.1
pip: 22.3.1
conda: None
pytest: 7.2.0
IPython: 8.6.0
sphinx: 5.3.0
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7350/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
667550022 | MDU6SXNzdWU2Njc1NTAwMjI= | 4283 | Selection with datetime64[ns] fails with Pandas 1.1.0 | dopplershift 221526 | closed | 0 | 2 | 2020-07-29T05:01:14Z | 2020-09-16T01:33:30Z | 2020-09-16T01:33:30Z | CONTRIBUTOR | I ran into this issue with a netCDF file with the following time variable: ``` double time1(time1) ; time1:_FillValue = NaN ; time1:standard_name = "time" ; time1:long_name = "time" ; time1:udunits = "Hour since 2017-09-05T12:00:00Z" ; time1:units = "Hour since 2017-09-05T12:00:00+00:00" ; time1:calendar = "proleptic_gregorian" ; time1 = 0, 3, 6, 9, 12, 15, 18, 21, 24 ;
t = np.array(['2017-09-05T12:00:00.000000000', '2017-09-05T15:00:00.000000000'], dtype='datetime64[ns]') da = xr.DataArray(np.ones(t.shape), dims=('time',), coords=(t,)) da.loc[{'time':t[0]}] # Works on pandas 1.0.5
KeyError Traceback (most recent call last) <ipython-input-11-3e0afa0bd195> in <module> ----> 1 da.loc[{'time':t[0]}] ~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/dataarray.py in getitem(self, key) 196 labels = indexing.expanded_indexer(key, self.data_array.ndim) 197 key = dict(zip(self.data_array.dims, labels)) --> 198 return self.data_array.sel(**key) 199 200 def setitem(self, key, value) -> None: ~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/dataarray.py in sel(self, indexers, method, tolerance, drop, **indexers_kwargs) 1147 1148 """ -> 1149 ds = self._to_temp_dataset().sel( 1150 indexers=indexers, 1151 drop=drop, ~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/dataset.py in sel(self, indexers, method, tolerance, drop, **indexers_kwargs) 2099 """ 2100 indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "sel") -> 2101 pos_indexers, new_indexes = remap_label_indexers( 2102 self, indexers=indexers, method=method, tolerance=tolerance 2103 ) ~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/coordinates.py in remap_label_indexers(obj, indexers, method, tolerance, **indexers_kwargs) 394 } 395 --> 396 pos_indexers, new_indexes = indexing.remap_label_indexers( 397 obj, v_indexers, method=method, tolerance=tolerance 398 ) ~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/indexing.py in remap_label_indexers(data_obj, indexers, method, tolerance) 268 coords_dtype = data_obj.coords[dim].dtype 269 label = maybe_cast_to_coords_dtype(label, coords_dtype) --> 270 idxr, new_idx = convert_label_indexer(index, label, dim, method, tolerance) 271 pos_indexers[dim] = idxr 272 if new_idx is not None: ~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/indexing.py in convert_label_indexer(index, label, index_name, method, tolerance) 187 indexer = index.get_loc(label.item()) 188 else: --> 189 indexer = index.get_loc( 190 label.item(), method=method, tolerance=tolerance 191 ) ~/miniconda3/envs/py38/lib/python3.8/site-packages/pandas/core/indexes/datetimes.py in get_loc(self, key, method, tolerance) 620 else: 621 # unrecognized type --> 622 raise KeyError(key) 623 624 try: KeyError: 1504612800000000000 ``` what's interesting is changing the units of t = np.array(['2017-09-05T12:00:00.000000000', '2017-09-05T15:00:00.000000000'], dtype='datetime64[s]') da = xr.DataArray(np.ones(t.shape), dims=('time',), coords=(t,)) da.loc[{'time':t[0]}] # Works ``` Environment: Python 3.8 from conda-forge on macOS 10.15.4 Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.8.5 | packaged by conda-forge | (default, Jul 24 2020, 01:06:20) [Clang 10.0.1 ] python-bits: 64 OS: Darwin OS-release: 19.6.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.16.0 pandas: 1.1.0 numpy: 1.19.1 scipy: 1.5.2 netCDF4: 1.5.4 pydap: None h5netcdf: None h5py: 2.10.0 Nio: None zarr: None cftime: 1.2.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: 0.9.8.3 iris: None bottleneck: None dask: 2.21.0 distributed: 2.21.0 matplotlib: 3.3.0 cartopy: 0.18.0 seaborn: None numbagg: None pint: 0.14 setuptools: 49.2.0.post20200712 pip: 20.1.1 conda: None pytest: 6.0.0 IPython: 7.16.1 sphinx: 2.4.4 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4283/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
318761320 | MDU6SXNzdWUzMTg3NjEzMjA= | 2090 | strftime and/or format support for DatetimeAccessor | dopplershift 221526 | closed | 0 | 1 | 2018-04-29T23:55:12Z | 2019-06-01T07:51:17Z | 2019-06-01T07:51:17Z | CONTRIBUTOR | There's no easy way currently to control the conversion to string of time values/series. For this purpose, Panda's own Is there interest in adding similar functionality to xarray? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2090/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
303727896 | MDU6SXNzdWUzMDM3Mjc4OTY= | 1976 | What's wrong with "conflicting" _FillValue and missing_value? | dopplershift 221526 | closed | 0 | 2 | 2018-03-09T05:21:27Z | 2018-03-09T17:45:35Z | 2018-03-09T17:45:35Z | CONTRIBUTOR | So this exception: ``` ValueError: Conflicting _FillValue and missing_value attrs on a variable 'MergedBaseReflectivityQC_altitude_above_msl': -999.0 vs. -99.0 Consider opening the offending dataset using decode_cf=False, correcting the attrs and decoding explicitly using xarray.decode_cf().
This happens in this case because the source GRIB file has one value specified for "missing" (maps to Is this a technical limitation? Or just something that needs an implementation? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1976/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
236595831 | MDU6SXNzdWUyMzY1OTU4MzE= | 1459 | xarray.Dataset from existing netCDF4.Dataset | dopplershift 221526 | closed | 0 | 2 | 2017-06-16T21:03:21Z | 2017-08-31T17:18:51Z | 2017-08-31T17:18:51Z | CONTRIBUTOR | It would be really handy to be able to initialize a It seems like the quick solution here would be to make |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1459/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);