home / github

Menu
  • Search all tables
  • GraphQL API

issues

Table actions
  • GraphQL API for issues

1 row where type = "issue" and user = 1970404 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date)

type 1

  • issue · 1 ✖

state 1

  • closed 1

repo 1

  • xarray 1
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
314670220 MDU6SXNzdWUzMTQ2NzAyMjA= 2063 test_reduce[None-True-var-True-float32-2] fails on i386 ginggs 1970404 closed 0     9 2018-04-16T14:15:31Z 2018-07-28T07:50:43Z 2018-07-28T07:50:43Z CONTRIBUTOR      

I see the following test failure with Ubuntu 18.04 32-bit (i386 architecture): ``` # make sure the compatiblility with pandas' results. actual = getattr(da, func)(skipna=skipna, dim=aggdim) if func == 'var': expected = series_reduce(da, func, skipna=skipna, dim=aggdim, ddof=0)

          assert_allclose(actual, expected, rtol=rtol)

E AssertionError: 1.0955861806869507 E 1.0792573690414429 Setting `rtol=1e-01` above reveals one more failure: # also check ddof!=0 case actual = getattr(da, func)(skipna=skipna, dim=aggdim, ddof=5) expected = series_reduce(da, func, skipna=skipna, dim=aggdim, ddof=5) assert_allclose(actual, expected, rtol=rtol) E AssertionError: 1.1401221752166748 E 1.1231297254562378 ``` These tests pass on other architectures; x86_64, ARM, POWER, etc.

I think this may be caused by i386 using 80-bit floating point precision internally, while other architectures use 64-bit.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/2063/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 21.605ms · About: xarray-datasette