home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

2 rows where type = "issue" and user = 161133 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date)

type 1

  • issue · 2 ✖

state 1

  • closed 2

repo 1

  • xarray 2
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
937508115 MDU6SXNzdWU5Mzc1MDgxMTU= 5581 Error slicing CFTimeIndex with Pandas 1.3 ScottWales 161133 closed 0     4 2021-07-06T04:28:00Z 2021-07-23T21:53:51Z 2021-07-23T21:53:51Z CONTRIBUTOR      

What happened:

Slicing a DataArray with a CFTime time axis gives an error TypeError: _maybe_cast_slice_bound() missing 1 required positional argument: 'kind'

What you expected to happen:

The slice should return elements 31 to 180

Minimal Complete Verifiable Example:

```python import xarray as xr import cftime import numpy as np

units = 'days since 2000-01-01 00:00' time_365 = cftime.num2date(np.arange(0, 10 * 365), units, '365_day')

da = xr.DataArray(np.arange(time_365.size), coords = [time_365], dims = 'time') da.sel(time=slice('2000-02','2000-06')) ```

Anything else we need to know?:

It appears to be a compatibility issue between Pandas 1.3.0 and Xarray 0.18.2, with Pandas 1.2.5 and Xarray 0.18.2 the slice behaves normally. Possibly there has been an interface change that has broken CFTimeIndex.

Using a pure Pandas time axis works fine ```python import xarray as xr import pandas as pd import numpy as np

time = pd.date_range('20000101','20100101', freq='D')

da = xr.DataArray(np.arange(time.size), coords = [time], dims = 'time') da.sel(time=slice('2000-02','2000-06')) ```

Environment:

Output of <tt>xr.show_versions()</tt> INSTALLED VERSIONS ------------------ commit: None python: 3.9.5 | packaged by conda-forge | (default, Jun 19 2021, 00:32:32) [GCC 9.3.0] python-bits: 64 OS: Linux OS-release: 4.18.0-305.7.1.el8.nci.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.18.2 pandas: 1.3.0 numpy: 1.21.0 scipy: 1.7.0 netCDF4: 1.5.6 pydap: installed h5netcdf: 0.11.0 h5py: 3.3.0 Nio: None zarr: 2.8.3 cftime: 1.4.1 nc_time_axis: 1.2.0 PseudoNetCDF: None rasterio: 1.2.6 cfgrib: 0.9.9.0 iris: 2.4.0 bottleneck: 1.3.2 dask: 2021.06.2 distributed: 2021.06.2 matplotlib: 3.4.2 cartopy: 0.19.0.post1 seaborn: 0.11.1 numbagg: None pint: 0.17 setuptools: 52.0.0.post20210125 pip: 21.1.3 conda: 4.10.3 pytest: 6.2.4 IPython: 7.25.0 sphinx: 4.0.3
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5581/reactions",
    "total_count": 2,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
440988633 MDU6SXNzdWU0NDA5ODg2MzM= 2943 Rolling operations loose chunking with dask and bottleneck ScottWales 161133 closed 0     1 2019-05-07T01:52:05Z 2019-05-07T02:01:13Z 2019-05-07T02:01:13Z CONTRIBUTOR      

Code Sample, a copy-pastable example if possible

A "Minimal, Complete and Verifiable Example" will make it much easier for maintainers to help you: http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports

```python import bottleneck import xarray import dask

data = dask.array.ones((100,), chunks=(10,)) da = xarray.DataArray(data, dims=['time'])

rolled = da.rolling(time=15).mean()

Expect the 'rolled' dataset to be chunked approximately the same as 'data',

however there is only one chunk in 'rolled' instead of 10

assert len(rolled.chunks[0]) > 1 ```

Problem description

Rolling operations loose chunking over the rolled dimension when using dask datasets with bottleneck installed, which is a problem for large datasets where we don't want to load the entire thing.

The issue appears to be caused by xarray.core.dask_array_ops.dask_rolling_wrapper calling dask.array.overlap.overlap on a DataArray instead of a Dask array. Possibly #2940 is related?

Expected Output

Chunks should be preserved through .rolling().mean()

Output of xr.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.6.7 | packaged by conda-forge | (default, Feb 28 2019, 09:07:38) [GCC 7.3.0] python-bits: 64 OS: Linux OS-release: 3.10.0-862.14.4.el6.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: en_AU.utf8 LANG: C LOCALE: en_AU.UTF-8 libhdf5: 1.10.4 libnetcdf: 4.6.2 xarray: 0.12.1 pandas: 0.24.2 numpy: 1.16.3 scipy: 1.2.1 netCDF4: 1.5.0.1 pydap: installed h5netcdf: None h5py: 2.9.0 Nio: None zarr: 2.3.1 cftime: 1.0.3.4 nc_time_axis: 1.2.0 PseudonetCDF: None rasterio: None cfgrib: None iris: 2.2.0 bottleneck: 1.2.1 dask: 1.2.0 distributed: 1.27.1 matplotlib: 3.0.3 cartopy: 0.17.0 seaborn: 0.9.0 setuptools: 41.0.1 pip: 19.1 conda: None pytest: 4.4.1 IPython: 7.5.0 sphinx: None
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/2943/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 20.243ms · About: xarray-datasette