issues
6 rows where type = "issue" and user = 15570875 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
690624634 | MDU6SXNzdWU2OTA2MjQ2MzQ= | 4401 | problem with time axis values in line plot | klindsay28 15570875 | closed | 0 | 4 | 2020-09-02T01:15:14Z | 2021-10-23T16:27:32Z | 2021-08-10T22:45:20Z | NONE | When I run the following code inside a jupyter notebook, the values on the x axis ( ``` import cftime import xarray as xr time_vals = [cftime.DatetimeNoLeap(1+year, 1+month, 15) for year in range(3) for month in range(12)] x_vals = [time_val.year + time_val.dayofyr / 365.0 for time_val in time_vals] x_da = xr.DataArray(x_vals, coords=[time_vals], dims=["time"]) x_da.plot.line("-o");
```
Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.7.8 | packaged by conda-forge | (default, Jul 31 2020, 02:25:08) [GCC 7.5.0] python-bits: 64 OS: Linux OS-release: 3.10.0-1127.13.1.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: en_US.UTF-8 LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.16.0 pandas: 1.1.1 numpy: 1.19.1 scipy: 1.5.2 netCDF4: 1.5.4 pydap: None h5netcdf: None h5py: None Nio: None zarr: 2.4.0 cftime: 1.2.1 nc_time_axis: 1.2.0 PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.3.2 dask: 2.14.0 distributed: 2.14.0 matplotlib: 3.3.1 cartopy: 0.18.0 seaborn: 0.10.1 numbagg: None pint: 0.15 setuptools: 49.6.0.post20200814 pip: 20.2.2 conda: None pytest: 6.0.1 IPython: 7.17.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4401/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
535043825 | MDU6SXNzdWU1MzUwNDM4MjU= | 3606 | confused by reference to dataset in docs for xarray.DataArray.copy | klindsay28 15570875 | closed | 0 | 2 | 2019-12-09T16:30:23Z | 2020-07-24T19:20:45Z | 2020-07-24T19:20:45Z | NONE | The documentation for xarray.DataArray.copy
I do not understand what dataset is being referred to here. In particular, there are no xarray datasets in the examples provided in this documentation. Could someone provide clarification? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3606/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
554376164 | MDU6SXNzdWU1NTQzNzYxNjQ= | 3718 | losing shallowness of ds.copy() on ds from xr.open_dataset | klindsay28 15570875 | open | 0 | 1 | 2020-01-23T20:02:55Z | 2020-01-23T21:39:05Z | NONE | MCVE Code Sample``` import numpy as np import xarray as xr xlen = 4 x = xr.DataArray(np.linspace(0.0, 1.0, xlen), dims=('x')) varname = 'foo' xr.Dataset({varname: xr.DataArray(np.arange(xlen, dtype='float64'), dims=('x'), coords={'x': x})}).to_netcdf('ds.nc') with xr.open_dataset('ds.nc') as ds: ds2 = ds.copy() ds2[varname][0] = 11.0 print(f'ds.equals = {ds.equals(ds2)}') with xr.open_dataset('ds.nc') as ds: ds2 = ds.copy() print(f'ds.equals = {ds.equals(ds2)}') ds2[varname][0] = 11.0 print(f'ds.equals = {ds.equals(ds2)}') ``` Expected OutputI expect the code to write out
However, when I run it, the last line is
Problem DescriptionThe code above writes a small In the first context manager block, a value in The second context manager block is the same as the first, except that I don't understand how evaluating I only observe this behavior when I'm rather perplexed by this. Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3718/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
437418525 | MDU6SXNzdWU0Mzc0MTg1MjU= | 2921 | to_netcdf with decoded time can create file with inconsistent time:units and time_bounds:units | klindsay28 15570875 | closed | 0 | 4 | 2019-04-25T22:08:52Z | 2019-06-25T00:24:42Z | 2019-06-25T00:24:42Z | NONE | Code Sample, a copy-pastable example if possible```python import numpy as np import xarray as xr create time and time_bounds DataArrays for Jan-1850 and Feb-1850time_bounds_vals = np.array([[0.0, 31.0], [31.0, 59.0]]) time_vals = time_bounds_vals.mean(axis=1) time_var = xr.DataArray(time_vals, dims='time', coords={'time':time_vals}) time_bounds_var = xr.DataArray(time_bounds_vals, dims=('time', 'd2'), coords={'time':time_vals}) create Dataset of time and time_boundsds = xr.Dataset(coords={'time':time_var}, data_vars={'time_bounds':time_bounds_var}) ds.time.attrs = {'bounds':'time_bounds', 'calendar':'noleap', 'units':'days since 1850-01-01'} write Jan-1850 values to fileds.isel(time=slice(0,1)).to_netcdf('Jan-1850.nc', unlimited_dims='time') write Feb-1850 values to fileds.isel(time=slice(1,2)).to_netcdf('Feb-1850.nc', unlimited_dims='time') use open_mfdataset to read in files, combining into 1 Datasetdecode_times = True decode_cf = True ds = xr.open_mfdataset(['Jan-1850.nc', 'Feb-1850.nc'], decode_cf=decode_cf, decode_times=decode_times) write combined Dataset outds.to_netcdf('JanFeb-1850.nc', unlimited_dims='time') ``` Problem descriptionThe above code initially creates 2 netCDF files, for Jan-1850 and Feb-1850, that have the variables time = 0, 708 ; time_bounds =
0, 31,
31, 59 ;
}
The final call to While the change to This inconsistency goes away if either of The inconsistency also goes away if I think that the desired behavior is to either not apply the units and type transformations to
INSTALLED VERSIONS
------------------
commit: None
python: 3.6.8 |Anaconda, Inc.| (default, Dec 30 2018, 01:22:34)
[GCC 7.3.0]
python-bits: 64
OS: Linux
OS-release: 3.12.62-60.64.8-default
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
libhdf5: 1.10.4
libnetcdf: 4.6.2
xarray: 0.12.1
pandas: 0.24.2
numpy: 1.16.2
scipy: 1.2.1
netCDF4: 1.4.2
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.0.3.4
nc_time_axis: None
PseudonetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: 1.1.5
distributed: 1.26.1
matplotlib: 3.0.3
cartopy: None
seaborn: None
setuptools: 40.8.0
pip: 19.0.3
conda: None
pytest: 4.3.1
IPython: 7.4.0
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2921/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
433916353 | MDU6SXNzdWU0MzM5MTYzNTM= | 2902 | DataArray sum().values depends on chunk size | klindsay28 15570875 | closed | 0 | 1 | 2019-04-16T18:09:33Z | 2019-04-17T02:01:55Z | 2019-04-17T02:01:55Z | NONE | Hi, The code below creates a Dataset with an While I'm not surprised at these round-off differences, I could not find mention of such behavior in the xarray documentation. Is this feature known to xarray developers? Do xarray developers consider it a feature or a bug? Either way, I think it would be useful if the xarray documentation would mention that the results of some operations depends on chunk size. code: ```import numpy as np import xarray as xr N = 128 val = 1.9 val_array = np.full((N, N, N), val) exact_sum = N * N * N * val ds = xr.DataArray(val_array, name='val_array', dims=['x', 'y', 'z']).to_dataset() rel_diff = (ds['val_array'].sum().values - exact_sum) / exact_sum print('no chunking, rel_diff = %e' % rel_diff) for chunk_x in [N//16, N//4, N]: for chunk_y in [N//16, N//4, N]: for chunk_z in [N//16, N//4, N]: ds2 = ds.chunk({'x':chunk_x, 'y':chunk_y, 'z':chunk_z}) rel_diff = (ds2['val_array'].sum().values - exact_sum) / exact_sum print('chunk_x = %3d, chunk_y = %3d, chunk_z = %3d, rel_diff = %e' \ % (chunk_x, chunk_y, chunk_z, rel_diff)) ``` results:
Output of
INSTALLED VERSIONS
------------------
commit: None
python: 3.6.8 |Anaconda, Inc.| (default, Dec 30 2018, 01:22:34)
[GCC 7.3.0]
python-bits: 64
OS: Linux
OS-release: 3.10.0-693.21.1.el7.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: en_US.UTF-8
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
libhdf5: 1.10.4
libnetcdf: 4.6.2
xarray: 0.12.1
pandas: 0.24.2
numpy: 1.16.2
scipy: 1.2.1
netCDF4: 1.4.2
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.0.3.4
nc_time_axis: None
PseudonetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: 1.1.5
distributed: 1.26.1
matplotlib: 3.0.3
cartopy: None
seaborn: None
setuptools: 40.8.0
pip: 19.0.3
conda: None
pytest: 4.3.1
IPython: 7.4.0
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2902/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
407750967 | MDU6SXNzdWU0MDc3NTA5Njc= | 2752 | document defaults for optional arguments to open_dataset, open_mfdataset | klindsay28 15570875 | closed | 0 | 5 | 2019-02-07T15:19:05Z | 2019-02-07T18:28:57Z | 2019-02-07T17:22:49Z | NONE | It would be useful if the docs for For example, the docs for |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2752/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);