issues
4 rows where type = "issue" and user = 14000880 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
441192361 | MDU6SXNzdWU0NDExOTIzNjE= | 2945 | Implicit conversion from int to float tampers with values when int is not representable as float | floogit 14000880 | closed | 0 | 1 | 2019-05-07T11:57:20Z | 2022-04-09T02:14:28Z | 2022-04-09T02:14:28Z | NONE | ```python ds = xr.Dataset() val = 95042027804193144 ds['var1'] = xr.DataArray(val) ds_1 = ds.where(ds.var1==val) print(ds_1.var1.dtype) dtype('float64') print(int(ds_1.var1)) 95042027804193152 ``` Problem descriptionAs described in #2183, int values are converted to float in Expected OutputI guess this is hard to fix. At a minimum, Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2945/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
245778442 | MDU6SXNzdWUyNDU3Nzg0NDI= | 1492 | Slicing inconsistent for coordinates and dimensions without coordinates | floogit 14000880 | closed | 0 | 3 | 2017-07-26T16:21:21Z | 2019-07-29T01:36:13Z | 2019-07-29T01:36:13Z | NONE | This is a new behavior since 0.9 and has broken some of my scripts, I am not sure if this is intentional? old, before 0.9: ``` ds = xr.Dataset() ds['x'] = (('x'), np.arange(100., 200., 10.)) ds['var1'] = (('x', 'i'), np.random.rand(10, 5)) ds.sel(x=slice(110, 130), i=slice(1, 3)) <xarray.Dataset> Dimensions: (i: 3, x: 3) Coordinates: * x (x) float64 110.0 120.0 130.0 * i (i) int64 1 2 3 Data variables: var1 (x, i) float64 0.8894 0.01157 0.2779 0.7247 0.5809 0.3448 ... ``` new, since 0.9: ``` ds = xr.Dataset() ds['x'] = (('x'), np.arange(100., 200., 10.)) ds['var1'] = (('x', 'i'), np.random.rand(10, 5)) ds.sel(x=slice(110, 130), i=slice(1, 3)) <xarray.Dataset> Dimensions: (i: 2, x: 3) Coordinates: * x (x) float64 110.0 120.0 130.0 Dimensions without coordinates: i Data variables: var1 (x, i) float64 0.9989 0.9092 0.9248 0.296 0.2209 0.5416 ``` Maybe slicing uses the standard (excluding) python |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1492/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
189721898 | MDU6SXNzdWUxODk3MjE4OTg= | 1126 | unstack raises error when there is only one dimension stacked | floogit 14000880 | closed | 0 | 3 | 2016-11-16T14:34:05Z | 2019-01-25T06:43:01Z | 2019-01-25T06:43:01Z | NONE | I am aware that
I stumbled upon this when implementing a stack-groupby-apply-unstack pattern on a dataset which normally has more than one dimension to stack, but sometimes might contain only one. I can circumvent this quite easily by checking if there is only one dimension to stack and not using stack/unstack then, but I somehow expected it to work without treating this case in a special way. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1126/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
385215500 | MDU6SXNzdWUzODUyMTU1MDA= | 2579 | sortby(dim) removes dimension from an array if dim is a repeated dimension | floogit 14000880 | closed | 0 | 1 | 2018-11-28T11:06:54Z | 2018-11-28T22:33:15Z | 2018-11-28T22:33:15Z | NONE | Related to #1378. As mentioned there, xarray sometimes seems to have problems with repeated dimensions. sortby() such a dimension seems to be an example: ```python ds = xr.DataArray(np.eye(2), coords={'alt': [100, 200], 'alt': [100, 200], }, dims=('alt', 'alt'), name='cov').to_dataset() print(ds) <xarray.Dataset> Dimensions: (alt: 2) Coordinates: * alt (alt) int64 100 200 Data variables: cov (alt, alt) float64 1.0 0.0 0.0 1.0 print(ds.sortby('alt')) <xarray.Dataset> Dimensions: (alt: 2) Coordinates: * alt (alt) int64 100 200 Data variables: cov (alt) float64 1.0 1.0 ``` Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2579/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);