issues
2 rows where type = "issue" and user = 13770365 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
514077742 | MDU6SXNzdWU1MTQwNzc3NDI= | 3458 | Keep index dimension when selecting only a single coord | ngreenwald 13770365 | open | 0 | 6 | 2019-10-29T17:02:29Z | 2021-03-02T06:48:08Z | NONE | MCVE Code Sample```python Your code hereimport numpy as np import xarray as xr data = np.zeros((10, 4)) example_xr = xr.DataArray(data, coords=[range(10), ["idx0", "idx1", "idx2", "dim3"]], dims=["rows", "cols"]) desired behaviorsubset = example_xr[:, 1:2] subset.shape inclusive indexing means both idx1 and idx2 keptsubset_named1 = example_xr.loc[:, "idx1":"idx2"] subset_named1.shape slicing behavior means that 2nd dimension is droppedsubset_named2 = example_xr.loc[:, "idx1"] subset_named2.shape ``` Expected OutputI'd like to be able to use named .loc indexing to select only a single named coord from one dimension, but not have that dimension collapse when subsetting. Problem DescriptionI looked, but wasn't able to find anything in the documentation about how to perform this same action using named coords. It works with integer-based slicing. Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3458/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
568705055 | MDU6SXNzdWU1Njg3MDUwNTU= | 3785 | open_dataarray(cache=False) still uses cached version of dataarray | ngreenwald 13770365 | closed | 0 | 2 | 2020-02-21T02:58:22Z | 2020-03-03T18:29:46Z | 2020-03-03T18:29:46Z | NONE | MCVE Code Sample```python Your code hereimport xarray as xr import numpy as np import os create two different xarrays with different sizes and coordstest_xr1 = xr.DataArray(np.zeros((5, 5, 3)), coords=[range(5), range(5), ["x1", "y1", "z1"]], dims=["1", "2", "3"]) test_xr2 = xr.DataArray(np.zeros((10, 2, 3)), coords=[range(10), range(2), ["x2", "y2", "z2"]], dims=["1", "2", "3"]) save first xarray, reload it, and inspect coordstest_xr1.to_netcdf("test_xr.xr") loaded_xr = xr.open_dataarray("test_xr.xr", cache=False) loaded_xr.coords Out[13]: Coordinates: * 1 (1) int64 0 1 2 3 4 * 2 (2) int64 0 1 2 3 4 * 3 (3) object 'x1' 'y1' 'z1' remove first xarray, save second with the same name, and load itos.remove("test_xr.xr") test_xr2.to_netcdf("test_xr.xr") loaded_xr = xr.open_dataarray("test_xr.xr", cache=False) loaded_xr.coords Out[17]: Coordinates: * 1 (1) int64 0 1 2 3 4 * 2 (2) int64 0 1 2 3 4 * 3 (3) object 'x1' 'y1' 'z1' ``` Expected OutputRather than loading the newly created/updated version of the file on disk, the cached version is used Problem DescriptionIf a file ever gets updated on disk and needs to be reloaded, this causes very mysterious bugs. Furthermore, the only workaround I found is to restart the python session. Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3785/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);