issues
2 rows where type = "issue" and user = 10928117 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 297560256 | MDU6SXNzdWUyOTc1NjAyNTY= | 1914 | cartesian product of coordinates and using it to index / fill empty dataset | RafalSkolasinski 10928117 | open | 0 | 17 | 2018-02-15T19:03:23Z | 2024-01-05T17:09:55Z | NONE | For a given empty dataset with only coordinates
I'd like to iterate over the product of coordinates, in a similar way as it can be done for
to fill the Also I'd like to extend this to the cases of functions that are multi-valued, i.e. they return a Is there an easy way to do so? I was unable to find anything similar in the docs. |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/1914/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
reopened | xarray 13221727 | issue | |||||||
| 303130664 | MDU6SXNzdWUzMDMxMzA2NjQ= | 1973 | question: dataset variables as coordinates | RafalSkolasinski 10928117 | closed | 0 | 1 | 2018-03-07T14:57:19Z | 2019-01-13T21:00:29Z | 2019-01-13T21:00:29Z | NONE | Problem descriptionLet's consider two datasets, ```python import xarray as xr import numpy as np x = np.linspace(0, 1, 10) da1 = xr.concat([xr.DataArray(x2, coords={'x': x, 'a': 0}, dims='x'), xr.DataArray(x2+1, coords={'x': x+1, 'a': 1}, dims='x')], dim='a') ds1 = da1.to_dataset(name='y') ds2 = xr.concat([xr.Dataset({'x': ('n', x), 'y': ('n', x2)}, coords={'n': range(10), 'a': 0}), xr.Dataset({'x': ('n', x+1), 'y': ('n', x2+1)}, coords={'n': range(10), 'a': 1})], dim='a') ``` These two datasets represents in principle the same data, stored in two different ways. ```python
QuestionIs there a straightforward way to reshape Second structure however is more natural when Output of
|
{
"url": "https://api.github.com/repos/pydata/xarray/issues/1973/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);