issues
5 rows where state = "open" and user = 7799184 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1268630439 | I_kwDOAMm_X85LncOn | 6688 | 2D extrapolation not working | rafa-guedes 7799184 | open | 0 | 3 | 2022-06-12T16:11:04Z | 2022-06-14T06:19:20Z | CONTRIBUTOR | What happened?Extrapolation does not seem to be working on 2D data arrays. The area outside the input grid is NaN in the interpolated data when using This figure shows the example data arrays from the code snippet provided here: What did you expect to happen?Area outside the input grid filled with extrapolated data. Minimal Complete Verifiable Example```Python import xarray as xr da = xr.DataArray( data=[[1, 2, 3], [3, 4, 5]], coords=dict(y=[0, 1], x=[10, 20, 30]), dims=("y", "x") ) dai = da.interp(x=[25, 30, 35], y=[0, 1], kwargs={"fill_value": None}) ``` MVCE confirmation
Relevant log outputNo response Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.7.12 | packaged by conda-forge | (default, Oct 26 2021, 06:08:53)
[GCC 9.4.0]
python-bits: 64
OS: Linux
OS-release: 5.13.0-1031-gcp
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: C.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.12.0
libnetcdf: 4.7.4
xarray: 0.20.2
pandas: 1.3.5
numpy: 1.19.5
scipy: 1.7.3
netCDF4: 1.5.8
pydap: None
h5netcdf: None
h5py: 3.7.0
Nio: None
zarr: 2.11.3
cftime: 1.6.0
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: 2022.02.0
distributed: None
matplotlib: 3.5.2
cartopy: None
seaborn: 0.11.2
numbagg: None
fsspec: 2022.5.0
cupy: None
pint: 0.18
sparse: None
setuptools: 59.8.0
pip: 22.1.1
conda: 4.12.0
pytest: 7.1.2
IPython: 7.33.0
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6688/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
595492608 | MDU6SXNzdWU1OTU0OTI2MDg= | 3942 | Time dtype encoding defaulting to `int64` when writing netcdf or zarr | rafa-guedes 7799184 | open | 0 | 8 | 2020-04-06T23:36:37Z | 2021-11-11T12:32:06Z | CONTRIBUTOR | Time This results in these datasets having a precision constrained by how the time units are defined (in the example below MCVE Code Sample```python In [1]: ds = xr.DataArray( ...: data=[0.5], ...: coords={"time": [datetime.datetime(2012,1,1)]}, ...: dims=("time",), ...: name="x", ...: ).to_dataset() In [2]: ds In [3]: ds.to_zarr("/tmp/x.zarr") In [4]: ds1 = xr.open_zarr("/tmp/x.zarr") In [5]: ds1.time.encoding In [6]: dsnew = xr.DataArray( ...: data=[1.5], ...: coords={"time": [datetime.datetime(2012,1,1,3,0,0)]}, ...: dims=("time",), ...: name="x", ...: ).to_dataset() In [7]: dsnew.to_zarr("/tmp/x.zarr", append_dim="time") In [8]: ds1 = xr.open_zarr("/tmp/x.zarr") In [9]: ds1.time.values ``` Expected Output
Problem DescriptionPerhaps it would be useful defaulting time ``` VersionsOutput of `xr.show_versions()`In [10]: xr.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.7.5 (default, Nov 20 2019, 09:21:52) [GCC 9.2.1 20191008] python-bits: 64 OS: Linux OS-release: 5.3.0-45-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_NZ.UTF-8 LOCALE: en_NZ.UTF-8 libhdf5: 1.10.4 libnetcdf: 4.6.3 xarray: 0.15.0 pandas: 1.0.1 numpy: 1.18.1 scipy: 1.4.1 netCDF4: 1.5.3 pydap: None h5netcdf: 0.8.0 h5py: 2.10.0 Nio: None zarr: 2.4.0 cftime: 1.1.0 nc_time_axis: None PseudoNetCDF: None rasterio: 1.1.3 cfgrib: None iris: None bottleneck: None dask: 2.14.0 distributed: 2.12.0 matplotlib: 3.2.0 cartopy: 0.17.0 seaborn: None numbagg: None setuptools: 45.3.0 pip: 20.0.2 conda: None pytest: 5.3.5 IPython: 7.13.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3942/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
517799069 | MDU6SXNzdWU1MTc3OTkwNjk= | 3486 | Should performance be equivalent when opening with chunks or re-chunking a dataset? | rafa-guedes 7799184 | open | 0 | 2 | 2019-11-05T14:14:58Z | 2021-08-31T15:28:04Z | CONTRIBUTOR | I was wondering if the chunking behaviour would be expected to be equivalent under two different use cases: (1) When opening a dataset using the I'm interested in performance for slicing across different dimensions. In my case the performance is quite different, please see the example below: Open dataset with one single chunk along
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3486/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
223231729 | MDU6SXNzdWUyMjMyMzE3Mjk= | 1379 | xr.concat consuming too much resources | rafa-guedes 7799184 | open | 0 | 4 | 2017-04-20T23:33:52Z | 2021-07-08T17:42:18Z | CONTRIBUTOR | Hi, I am reading in several (~1000) small ascii files into Dataset objects and trying to concatenate them over one specific dimension but I eventually blow my memory up. The file glob is not huge (~700M, my computer has ~16G) and I can do it fine if I only read in the Datasets appending them to a list without concatenating them (my memory increases by 5% only or so by the time I had read them all). However, when trying to concatenate each file into one single Dataset upon reading over a loop, the processing speeds drastically reduce before I have read 10% of the files or so and my memory usage keeps going up until it eventually blows up before I read and concatenate 30% of these files (the screenshot below was taken before it blew up, the memory usage was under 20% by the start of the processing). I was wondering if this is expected, or if there something that could be improved to make that work more efficiently please. I'm changing my approach now by extracting numpy arrays from the individual Datasets, concatenating these numpy arrays and defining the final Dataset only at the end. Thanks. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1379/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
129630652 | MDU6SXNzdWUxMjk2MzA2NTI= | 733 | coordinate variable not written in netcdf file in some cases | rafa-guedes 7799184 | open | 0 | 5 | 2016-01-29T00:55:54Z | 2020-12-25T16:49:54Z | CONTRIBUTOR | I came across a situation where my coordinate variable was not dumped as a variable in the output netcdf file using The situation where that happened was while creating a sliced dataset with ``` In [1]: import xarray as xr In [2]: ds = xr.open_dataset('netcdf_file_with_longitude_and_latitude.nc') In [3]: ds Out[3]: <xarray.Dataset> Dimensions: (latitude: 576, longitude: 1152, time: 745) Coordinates: * latitude (latitude) float64 -89.76 -89.45 -89.14 -88.83 -88.52 -88.2 ... * longitude (longitude) float64 0.0 0.3125 0.625 0.9375 1.25 1.562 1.875 ... * time (time) datetime64[ns] 1979-01-01 1979-01-01T01:00:00 ... Data variables: ugrd10m (time, latitude, longitude) float64 0.2094 0.25 0.2799 0.3183 ... vgrd10m (time, latitude, longitude) float64 -5.929 -5.918 -5.918 ... In [4]: ds2 = ds.isel_points(longitude=[0], latitude=[0]).reset_coords() In [5]: ds2 Out[5]: <xarray.Dataset> Dimensions: (points: 1, time: 745) Coordinates: * time (time) datetime64[ns] 1979-01-01 1979-01-01T01:00:00 ... * points (points) int64 0 Data variables: latitude (points) float64 -89.76 vgrd10m (points, time) float64 -5.929 -6.078 -6.04 -5.958 -5.858 ... ugrd10m (points, time) float64 0.2094 0.109 0.008546 -0.09828 -0.2585 ... longitude (points) float64 0.0 In [6]: ds2['points'].attrs Out[6]: OrderedDict() In [7]: ds2.to_netcdf('/home/rafael/ncout1.nc') In [8]: ds2['points'].attrs.update({'standard_name': 'site'}) In [9]: ds2['points'].attrs Out[9]: OrderedDict([('standard_name', 'site')]) In [10]: ds2.to_netcdf('/home/rafael/ncout2.nc') ``` Here is the ncdump output for these two files:
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/733/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);