issues
9 rows where state = "open" and user = 500246 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
203999231 | MDU6SXNzdWUyMDM5OTkyMzE= | 1238 | `set_index` converts string-dtype to object-dtype | gerritholl 500246 | open | 0 | 10 | 2017-01-30T12:37:05Z | 2023-03-13T14:09:21Z | CONTRIBUTOR | 'Dataset.set_index' apparently changes a ``` In [108]: ds = xarray.Dataset({"x": (("a", "b"), arange(25).reshape(5,5)+100), "y": ("b", arange(5)-100)}, {"a": arange(5), "b": arange(5)*2, "c": (("a",), list("ABCDE"))}) In [109]: print(ds) <xarray.Dataset> Dimensions: (a: 5, b: 5) Coordinates: * b (b) int64 0 2 4 6 8 c (a) <U1 'A' 'B' 'C' 'D' 'E' * a (a) int64 0 1 2 3 4 Data variables: x (a, b) int64 100 101 102 103 104 105 106 107 108 109 110 111 ... y (b) int64 -100 -99 -98 -97 -96 In [110]: print(ds.set_index(a='c')) <xarray.Dataset> Dimensions: (a: 5, b: 5) Coordinates: * b (b) int64 0 2 4 6 8 * a (a) object 'A' 'B' 'C' 'D' 'E' Data variables: x (a, b) int64 100 101 102 103 104 105 106 107 108 109 110 111 ... y (b) int64 -100 -99 -98 -97 -96 ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1238/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
741806260 | MDU6SXNzdWU3NDE4MDYyNjA= | 4579 | Invisible differences between arrays using IntervalIndex | gerritholl 500246 | open | 0 | 2 | 2020-11-12T17:54:55Z | 2022-10-03T15:09:25Z | CONTRIBUTOR | What happened: I have two What you expected to happen: I expect two arrays that appear identical to behave identically. If they don't behave identically then there should be some way to tell the difference (apart from Minimal Complete Verifiable Example: ```python import xarray import pandas da1 = xarray.DataArray([0, 1, 2], dims=("x",), coords={"x": pandas.interval_range(0, 2, 3)}) da2 = xarray.DataArray([0, 1, 2], dims=("x",), coords={"x": pandas.interval_range(0, 2, 3).to_numpy()}) print(repr(da1) == repr(da2)) print(repr(da1.x) == repr(da2.x)) print(da1.x.dtype == da2.x.dtype) identical? No:print(da1.equals(da2)) print(da1.x.equals(da2.x)) in particular:da1.sel(x=1) # works da2.sel(x=1) # fails ``` Results in: ``` True True True False False Traceback (most recent call last): File "/data/gholl/miniconda3/envs/py38/lib/python3.8/site-packages/pandas/core/indexes/base.py", line 2895, in get_loc return self._engine.get_loc(casted_key) File "pandas/_libs/index.pyx", line 70, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/index.pyx", line 101, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/hashtable_class_helper.pxi", line 1675, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas/_libs/hashtable_class_helper.pxi", line 1683, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: 1 The above exception was the direct cause of the following exception: Traceback (most recent call last): File "mwe105.py", line 19, in <module> da2.sel(x=1) # fails File "/data/gholl/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/dataarray.py", line 1143, in sel ds = self._to_temp_dataset().sel( File "/data/gholl/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/dataset.py", line 2105, in sel pos_indexers, new_indexes = remap_label_indexers( File "/data/gholl/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/coordinates.py", line 397, in remap_label_indexers pos_indexers, new_indexes = indexing.remap_label_indexers( File "/data/gholl/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/indexing.py", line 275, in remap_label_indexers idxr, new_idx = convert_label_indexer(index, label, dim, method, tolerance) File "/data/gholl/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/indexing.py", line 196, in convert_label_indexer indexer = index.get_loc(label_value, method=method, tolerance=tolerance) File "/data/gholl/miniconda3/envs/py38/lib/python3.8/site-packages/pandas/core/indexes/base.py", line 2897, in get_loc raise KeyError(key) from err KeyError: 1 ``` Additional context I suppose this happens because under the hood xarray does something clever to support pandas-style indexing even though the coordinate variable appears like a numpy array with an object dtype, and that this cleverness is lost if the object is already converted to a numpy array. But there is, as far as I can see, no way to tell the difference once the objects have been created. Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.8.6 | packaged by conda-forge | (default, Oct 7 2020, 19:08:05) [GCC 7.5.0] python-bits: 64 OS: Linux OS-release: 4.12.14-lp150.12.82-default machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: en_GB.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.16.1 pandas: 1.1.4 numpy: 1.19.4 scipy: 1.5.3 netCDF4: 1.5.4 pydap: None h5netcdf: 0.8.1 h5py: 3.1.0 Nio: None zarr: 2.5.0 cftime: 1.2.1 nc_time_axis: None PseudoNetCDF: None rasterio: 1.1.7 cfgrib: None iris: None bottleneck: None dask: 2.30.0 distributed: 2.30.1 matplotlib: 3.3.2 cartopy: 0.18.0 seaborn: None numbagg: None pint: None setuptools: 49.6.0.post20201009 pip: 20.2.4 conda: installed pytest: 6.1.2 IPython: 7.19.0 sphinx: 3.3.0 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4579/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
232623945 | MDU6SXNzdWUyMzI2MjM5NDU= | 1435 | xarray.plot.imshow with datetime coordinates results in blank plot | gerritholl 500246 | open | 0 | 6 | 2017-05-31T16:31:30Z | 2022-05-03T01:56:37Z | CONTRIBUTOR | ``` In [72]: da = xarray.DataArray(arange(5*6).reshape(5,6), dims=("A", "B"), coords={"A": arange(5), "B": pd.date_range("2000-01-01", periods=6)}) In [73]: da.plot.imshow() Out[73]: <matplotlib.image.AxesImage at 0x7f699cf1acf8> ``` The resulting plot has the correct axes and colorbar, but the contents of the plot itself are blank. Upon moving the cursor over the plot, there is an exception in
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1435/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
686461572 | MDU6SXNzdWU2ODY0NjE1NzI= | 4378 | Plotting when Interval coordinate is timedelta-based | gerritholl 500246 | open | 0 | 2 | 2020-08-26T16:36:27Z | 2022-04-18T21:55:15Z | CONTRIBUTOR | Is your feature request related to a problem? Please describe. The xarray plotting interface supports coordinates containing ```python import numpy as np import pandas as pd import xarray as xr da = xr.DataArray( np.arange(10), dims=("x",), coords={"x": [pd.Interval(i, i+1) for i in range(10)]}) da.plot() # works da = xr.DataArray( np.arange(10), dims=("x",), coords={"x": [pd.Interval( d-pd.Timestamp("2000-01-01"), d-pd.Timestamp("2000-01-01")+pd.Timedelta("1H")) for d in pd.date_range("2000-01-01", "2000-01-02", 10)]}) da.plot() # fails ``` The latter fails with:
This error message is somewhat confusing, because the coordinates are "dates of type (...) pd.Interval", but perhaps a timedelta is not considered a date. Describe the solution you'd like I would like that I can use the xarray plotting interface for any pandas.Interval coordinate, including Describe alternatives you've considered I'll "manually" calculate the midpoints and use those as a timedelta coordinate instead. Additional context It seems that regular timedeltas aren't really supported either, although they don't cause an error message, they rather produce incorrect results. There's probably a related issue somewhere, but I can't find it now. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4378/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
203630267 | MDU6SXNzdWUyMDM2MzAyNjc= | 1234 | `where` grows new dimensions for unrelated variables | gerritholl 500246 | open | 0 | 5 | 2017-01-27T13:02:34Z | 2022-04-18T16:04:16Z | CONTRIBUTOR | In the example below, the dimensionality for data variable ``` In [46]: ds = xarray.Dataset({"x": (("a", "b"), arange(25).reshape(5,5)+100), "y": ("b", arange(5)-100)}, {"a": arange(5), "b": arange(5)*2, "c": (("a",), list("ABCDE"))})
``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1234/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
751732952 | MDU6SXNzdWU3NTE3MzI5NTI= | 4612 | Assigning nan to int-dtype array converts nan to int | gerritholl 500246 | open | 0 | 1 | 2020-11-26T17:00:45Z | 2021-01-02T03:55:30Z | CONTRIBUTOR | (I am almost sure this already exists as an issue, but I can't find the original) What happened: When assigning nan to a integer-dtype array, the nan gets incorrectly inverted to int. What you expected to happen: I expect to get a Minimal Complete Verifiable Example:
Gives:
Anything else we need to know?: In numpy the equivalent code raises This is related but different from #2945. In #2945, xarray behaves the same as numpy. In #4612, xarray behaves differently from numpy. Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.8.6 | packaged by conda-forge | (default, Oct 7 2020, 19:08:05) [GCC 7.5.0] python-bits: 64 OS: Linux OS-release: 4.12.14-lp150.12.82-default machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: en_GB.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.16.1 pandas: 1.1.4 numpy: 1.19.4 scipy: 1.5.3 netCDF4: 1.5.4 pydap: None h5netcdf: 0.8.1 h5py: 3.1.0 Nio: None zarr: 2.5.0 cftime: 1.2.1 nc_time_axis: None PseudoNetCDF: None rasterio: 1.1.7 cfgrib: None iris: None bottleneck: None dask: 2.30.0 distributed: 2.30.1 matplotlib: 3.3.2 cartopy: 0.18.0 seaborn: None numbagg: None pint: None setuptools: 49.6.0.post20201009 pip: 20.2.4 conda: installed pytest: 6.1.2 IPython: 7.19.0 sphinx: 3.3.0 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4612/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
283345586 | MDU6SXNzdWUyODMzNDU1ODY= | 1792 | Comparison with masked array yields object-array with nans for masked values | gerritholl 500246 | open | 0 | 3 | 2017-12-19T19:37:13Z | 2020-10-11T13:34:25Z | CONTRIBUTOR | Code Sample, a copy-pastable example if possible``` $ cat mwe.py !/usr/bin/env python3.6import xarray import numpy da = xarray.DataArray(numpy.arange(5)) ma = numpy.ma.masked_array(numpy.arange(5), [True, False, False, False, True]) print(da>ma) $ ./mwe.py <xarray.DataArray (dim_0: 5)> array([nan, False, False, False, nan], dtype=object) Dimensions without coordinates: dim_0 ``` Problem descriptionA comparison between a Expected OutputI would expect the masked array to be dropped (which it is) and an array to be returned equivalent to the comparison
Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1792/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
199188476 | MDU6SXNzdWUxOTkxODg0NzY= | 1194 | Use masked arrays while preserving int | gerritholl 500246 | open | 0 | 9 | 2017-01-06T12:40:22Z | 2020-03-29T20:37:29Z | CONTRIBUTOR | A great beauty of numpys masked arrays is that it works with any dtype, since it does not use ``` In [137]: x = arange(30, dtype="i1").reshape(3, 10) In [138]: xr.Dataset({"count": (["x", "y"], ma.masked_where(x%5>3, x))}, coords={"x": range(3), "y": ...: range(10)}) Out[138]: <xarray.Dataset> Dimensions: (x: 3, y: 10) Coordinates: * y (y) int64 0 1 2 3 4 5 6 7 8 9 * x (x) int64 0 1 2 Data variables: count (x, y) float64 0.0 1.0 2.0 3.0 nan 5.0 6.0 7.0 8.0 nan 10.0 ... ``` This happens in the function Such type “promotion” is unaffordable for me; the memory consumption of my multi-gigabyte arrays would explode by a factor 4. Secondly, many of my integer-dtype fields are bit arrays, for which floating point representation is not desirable. It would greatly benefit (See also: Stackoverflow question) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1194/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
410317757 | MDU6SXNzdWU0MTAzMTc3NTc= | 2772 | Should xarray allow assigning a masked constant? | gerritholl 500246 | open | 0 | 1 | 2019-02-14T14:10:20Z | 2019-02-15T20:24:44Z | CONTRIBUTOR | Currently, |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2772/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);