home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

3 rows where state = "open" and user = 43613877 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

type 2

  • issue 2
  • pull 1

state 1

  • open · 3 ✖

repo 1

  • xarray 3
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
1128821318 PR_kwDOAMm_X84yULfs 6260 allow coordinates to be independent of `region` selection in to_zarr observingClouds 43613877 open 0     2 2022-02-09T17:21:19Z 2023-10-24T23:37:21Z   CONTRIBUTOR   1 pydata/xarray/pulls/6260

The region argument has been validated too strictly as coordinates needed to have a common dimension with the selected dimensions in region. The validation is now restricted to data variables.

  • [X] Closes #6069
  • [X] Tests added
  • [X] User visible changes (including notable bug fixes) are documented in whats-new.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6260/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
822320976 MDU6SXNzdWU4MjIzMjA5NzY= 4995 KeyError when selecting "nearest" data with given tolerance observingClouds 43613877 open 0     8 2021-03-04T17:00:13Z 2022-10-25T14:35:35Z   CONTRIBUTOR      

What happened: Selecting data with ds.sel(index=given_index, method="nearest", tolerance=tolerance) only works in case for each given_index exists an index that is within the given tolerance, otherwise a `KeyError: "not all values found in index 'index'" occurs.

What you expected to happen: I would expect, that those indices that are not within the tolerance would simply be dropped.

Minimal Complete Verifiable Example:

```python import xarray as xr ds = xr.DataArray([1,2,3,4,5], dims=["lat"], coords={'lat':[10,20,30,50,60]})

working example, all latitudes are within the tolerance

ds.sel(lat=[5,15,40], method="nearest", tolerance=10)

<xarray.DataArray (lat: 3)>

array([1, 2, 4])

Coordinates:

* lat (lat) int64 10 20 50

failing example, latitude 40 is not within the tolerance

ds.sel(lat=[5,15,40], method="nearest", tolerance=5)

KeyError: "not all values found in index 'lat'"

```

I would expect ```

ds.sel(lat=[5,15,40], method="nearest", tolerance=5) <xarray.DataArray (lat: 2)> array([1, 2]) Coordinates: * lat (lat) int64 10 20 ```

Anything else we need to know?:

Environment:

Output of <tt>xr.show_versions()</tt> INSTALLED VERSIONS ------------------ commit: 66acafa7f1f1477cfd6c5b7c3458859763433092 python: 3.8.8 | packaged by conda-forge | (default, Feb 20 2021, 16:12:38) [Clang 11.0.1 ] python-bits: 64 OS: Darwin OS-release: 20.2.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: None LOCALE: None.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.15.2.dev452+g66acafa7.d20210304 pandas: 1.2.3 numpy: 1.20.1 scipy: 1.6.0 netCDF4: 1.5.6 pydap: installed h5netcdf: 0.10.0 h5py: 3.1.0 Nio: None zarr: 2.6.1 cftime: 1.4.1 nc_time_axis: 1.2.0 PseudoNetCDF: installed rasterio: 1.2.0 cfgrib: 0.9.8.5 iris: 2.4.0 bottleneck: 1.3.2 dask: 2021.02.0 distributed: 2021.02.0 matplotlib: 3.3.4 cartopy: 0.18.0 seaborn: 0.11.1 numbagg: installed pint: 0.16.1 setuptools: 49.6.0.post20210108 pip: 20.2.4 conda: None pytest: 6.2.2 IPython: None sphinx: None
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4995/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue
1362683132 I_kwDOAMm_X85ROOT8 6995 `mean` returns empty DataArray for `groupby_bins` containing `datetime64` observingClouds 43613877 open 0     1 2022-09-06T04:20:40Z 2022-09-30T17:18:22Z   CONTRIBUTOR      

What happened?

Applying the mean operator to an xarray dataset that has been grouped by bins, removes variables containing values of type datetime64.

What did you expect to happen?

I expect that all variables are preserved after applying the mean-operator. For min and max this works as expected. sum is not meaningful, so it makes sense that the variable is dropped in that case as well.

Minimal Complete Verifiable Example

```Python import numpy as np import pandas as pd import xarray as xr

times = pd.date_range('2020-01-01', '2020-02-01', freq='1H') index = np.arange(len(times)) bins = np.arange(0,len(index),5) ds=xr.Dataset({'time':('index', times),'float':('index', np.linspace(0,1,len(index)))},coords={'index':index})

ds.groupby_bins('index', bins).mean() <xarray.Dataset> Dimensions: (index_bins: 148) Coordinates: * index_bins (index_bins) object (0, 5] (5, 10] ... (730, 735] (735, 740] Data variables: float (index_bins) float64 0.004032 0.01075 0.01747 ... 0.9852 0.9919

ds.groupby_bins('index', bins).min() <xarray.Dataset> Dimensions: (index_bins: 148) Coordinates: * index_bins (index_bins) object (0, 5] (5, 10] ... (730, 735] (735, 740] Data variables: time (index_bins) datetime64[ns] 2020-01-01T01:00:00 ... 2020-01-3... float (index_bins) float64 0.001344 0.008065 0.01478 ... 0.9825 0.9892 ```

MVCE confirmation

  • [X] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
  • [X] Complete example — the example is self-contained, including all data and the text of any traceback.
  • [X] Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
  • [X] New issue — a search of GitHub Issues suggests this is not a duplicate.

Relevant log output

No response

Anything else we need to know?

No response

Environment

INSTALLED VERSIONS ------------------ commit: None python: 3.10.6 | packaged by conda-forge | (main, Aug 22 2022, 20:43:44) [Clang 13.0.1 ] python-bits: 64 OS: Darwin OS-release: 21.6.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: None LOCALE: ('en_US', 'UTF-8') libhdf5: None libnetcdf: None xarray: 2022.6.0 pandas: 1.4.4 numpy: 1.23.2 scipy: None netCDF4: None pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: None distributed: None matplotlib: 3.5.3 cartopy: None seaborn: None numbagg: None fsspec: 2022.8.2 cupy: None pint: None sparse: None flox: None numpy_groupies: None setuptools: 65.3.0 pip: 22.2.2 conda: None pytest: None IPython: 8.4.0 sphinx: None
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6995/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 1045.998ms · About: xarray-datasette