home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

2 rows where state = "open" and user = 4295853 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

type 1

  • issue 2

state 1

  • open · 2 ✖

repo 1

  • xarray 2
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
178200674 MDU6SXNzdWUxNzgyMDA2NzQ= 1013 Groupby exclude dimension pwolfram 4295853 open 0     8 2016-09-20T22:48:46Z 2020-10-04T16:05:06Z   CONTRIBUTOR      

Is there some way to do a groupby operation where some dimension is excluded from the operation, e.g., a vectorized version of something like this:

python vertlevels = [ds.vel.sel(nVertLevels=i).groupby('y').mean() for i in ds.nVertLevels] xavgvel = xr.concat(vertlevels, 'nVertLevels')

The application here is to average 3D data in the x coordinate to the unique y coordinates, but not the vertical coordinate.

Thus, we are basically looking for something that allows a coordinate to be excluded from the groupby operation, e.g., in this case the vertical coordinate. Ideally this would also be possible within the context of the groupby_bins operation.

Any ideas on how this should work or a pointer on how to implement this type of operation more cleanly with existing infrastructure is greatly appreciated. This appears to be related to #324 and especially (perhaps identically) #924.

cc @vanroekel, @shoyer, @jhamman, @rabernat, @MaximilianR

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1013/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue
217584777 MDU6SXNzdWUyMTc1ODQ3Nzc= 1335 `cumsum` providing correct behavior for non-coordinate DataArrays? pwolfram 4295853 open 0     5 2017-03-28T14:45:12Z 2019-03-31T05:41:09Z   CONTRIBUTOR      

In the case of a DataArray without coordinates, should cumsum work without specifying an axis, e.g., da.cumsum() is valid? This is not currently the obtained behavior.

```python In [1]: import xarray as xr imp In [2]: import numpy as np

In [3]: da = xr.DataArray(np.arange(10))

In [4]: da Out[4]: <xarray.DataArray (dim_0: 10)> array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Dimensions without coordinates: dim_0

In [5]: da.cumsum(axis=0) Out[5]: <xarray.DataArray (dim_0: 10)> array([ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45]) Dimensions without coordinates: dim_0

In [6]: da.cumsum()

ValueError Traceback (most recent call last) <ipython-input-5-4ff0efc782ee> in <module>() ----> 1 da.cumsum()

/Users/pwolfram/src/xarray/xarray/core/common.pyc in wrapped_func(self, dim, axis, skipna, keep_attrs, kwargs) 17 keep_attrs=False, kwargs): 18 return self.reduce(func, dim, axis, keep_attrs=keep_attrs, ---> 19 skipna=skipna, allow_lazy=True, **kwargs) 20 else: 21 def wrapped_func(self, dim=None, axis=None, keep_attrs=False,

/Users/pwolfram/src/xarray/xarray/core/dataarray.pyc in reduce(self, func, dim, axis, keep_attrs, kwargs) 1146 summarized data and the indicated dimension(s) removed. 1147 """ -> 1148 var = self.variable.reduce(func, dim, axis, keep_attrs, kwargs) 1149 return self._replace_maybe_drop_dims(var) 1150

/Users/pwolfram/src/xarray/xarray/core/variable.pyc in reduce(self, func, dim, axis, keep_attrs, allow_lazy, **kwargs) 898 if dim is None and axis is None: 899 raise ValueError("must supply either single 'dim' or 'axis' " --> 900 "argument to %s" % (func.name)) 901 902 if dim is not None:

ValueError: must supply either single 'dim' or 'axis' argument to cumsum

```

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1335/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 1117.595ms · About: xarray-datasette