issues
2 rows where state = "open", "updated_at" is on date 2022-04-18 and user = 500246 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 686461572 | MDU6SXNzdWU2ODY0NjE1NzI= | 4378 | Plotting when Interval coordinate is timedelta-based | gerritholl 500246 | open | 0 | 2 | 2020-08-26T16:36:27Z | 2022-04-18T21:55:15Z | CONTRIBUTOR | Is your feature request related to a problem? Please describe. The xarray plotting interface supports coordinates containing ```python import numpy as np import pandas as pd import xarray as xr da = xr.DataArray( np.arange(10), dims=("x",), coords={"x": [pd.Interval(i, i+1) for i in range(10)]}) da.plot() # works da = xr.DataArray( np.arange(10), dims=("x",), coords={"x": [pd.Interval( d-pd.Timestamp("2000-01-01"), d-pd.Timestamp("2000-01-01")+pd.Timedelta("1H")) for d in pd.date_range("2000-01-01", "2000-01-02", 10)]}) da.plot() # fails ``` The latter fails with:
This error message is somewhat confusing, because the coordinates are "dates of type (...) pd.Interval", but perhaps a timedelta is not considered a date. Describe the solution you'd like I would like that I can use the xarray plotting interface for any pandas.Interval coordinate, including Describe alternatives you've considered I'll "manually" calculate the midpoints and use those as a timedelta coordinate instead. Additional context It seems that regular timedeltas aren't really supported either, although they don't cause an error message, they rather produce incorrect results. There's probably a related issue somewhere, but I can't find it now. |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/4378/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | issue | ||||||||
| 203630267 | MDU6SXNzdWUyMDM2MzAyNjc= | 1234 | `where` grows new dimensions for unrelated variables | gerritholl 500246 | open | 0 | 5 | 2017-01-27T13:02:34Z | 2022-04-18T16:04:16Z | CONTRIBUTOR | In the example below, the dimensionality for data variable ``` In [46]: ds = xarray.Dataset({"x": (("a", "b"), arange(25).reshape(5,5)+100), "y": ("b", arange(5)-100)}, {"a": arange(5), "b": arange(5)*2, "c": (("a",), list("ABCDE"))})
``` |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/1234/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);