issues
2 rows where state = "open", "updated_at" is on date 2022-04-18 and user = 500246 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
686461572 | MDU6SXNzdWU2ODY0NjE1NzI= | 4378 | Plotting when Interval coordinate is timedelta-based | gerritholl 500246 | open | 0 | 2 | 2020-08-26T16:36:27Z | 2022-04-18T21:55:15Z | CONTRIBUTOR | Is your feature request related to a problem? Please describe. The xarray plotting interface supports coordinates containing ```python import numpy as np import pandas as pd import xarray as xr da = xr.DataArray( np.arange(10), dims=("x",), coords={"x": [pd.Interval(i, i+1) for i in range(10)]}) da.plot() # works da = xr.DataArray( np.arange(10), dims=("x",), coords={"x": [pd.Interval( d-pd.Timestamp("2000-01-01"), d-pd.Timestamp("2000-01-01")+pd.Timedelta("1H")) for d in pd.date_range("2000-01-01", "2000-01-02", 10)]}) da.plot() # fails ``` The latter fails with:
This error message is somewhat confusing, because the coordinates are "dates of type (...) pd.Interval", but perhaps a timedelta is not considered a date. Describe the solution you'd like I would like that I can use the xarray plotting interface for any pandas.Interval coordinate, including Describe alternatives you've considered I'll "manually" calculate the midpoints and use those as a timedelta coordinate instead. Additional context It seems that regular timedeltas aren't really supported either, although they don't cause an error message, they rather produce incorrect results. There's probably a related issue somewhere, but I can't find it now. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4378/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
203630267 | MDU6SXNzdWUyMDM2MzAyNjc= | 1234 | `where` grows new dimensions for unrelated variables | gerritholl 500246 | open | 0 | 5 | 2017-01-27T13:02:34Z | 2022-04-18T16:04:16Z | CONTRIBUTOR | In the example below, the dimensionality for data variable ``` In [46]: ds = xarray.Dataset({"x": (("a", "b"), arange(25).reshape(5,5)+100), "y": ("b", arange(5)-100)}, {"a": arange(5), "b": arange(5)*2, "c": (("a",), list("ABCDE"))})
``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1234/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);