home / github

Menu
  • Search all tables
  • GraphQL API

issues

Table actions
  • GraphQL API for issues

14 rows where state = "open", type = "pull" and user = 2448579 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: comments, draft, created_at (date), updated_at (date)

type 1

  • pull · 14 ✖

state 1

  • open · 14 ✖

repo 1

  • xarray 14
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
2278499376 PR_kwDOAMm_X85uhFke 8997 Zarr: Optimize `region="auto"` detection dcherian 2448579 open 0     1 2024-05-03T22:13:18Z 2024-05-04T21:47:39Z   MEMBER   0 pydata/xarray/pulls/8997
  1. This moves the region detection code into ZarrStore so we only open the store once.
  2. Instead of opening the store as a dataset, construct a pd.Index directly to "auto"-infer the region.

The diff is large mostly because a bunch of code moved from backends/api.py to backends/zarr.py

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8997/reactions",
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
2278510478 PR_kwDOAMm_X85uhIGP 8998 Zarr: Optimize appending dcherian 2448579 open 0     0 2024-05-03T22:21:44Z 2024-05-03T22:23:34Z   MEMBER   1 pydata/xarray/pulls/8998

Builds on #8997

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8998/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
2187743087 PR_kwDOAMm_X85ptH1f 8840 Grouper, Resampler as public api dcherian 2448579 open 0     0 2024-03-15T05:16:05Z 2024-04-21T16:21:34Z   MEMBER   1 pydata/xarray/pulls/8840

Expose Grouper and Resampler as public API

TODO: - [ ] Consider avoiding IndexVariable


  • [x] Tests added
  • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [x] New functions/methods are listed in api.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8840/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
2215762637 PR_kwDOAMm_X85rMHpN 8893 Avoid extra read from disk when creating Pandas Index. dcherian 2448579 open 0     1 2024-03-29T17:44:52Z 2024-04-08T18:55:09Z   MEMBER   0 pydata/xarray/pulls/8893
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8893/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
2224297504 PR_kwDOAMm_X85rpGUH 8906 Add invariant check for IndexVariable.name dcherian 2448579 open 0     1 2024-04-04T02:13:33Z 2024-04-05T07:12:54Z   MEMBER   1 pydata/xarray/pulls/8906

@benbovy this seems to be the root cause of #8646, the variable name in Dataset._variables does not match IndexVariable.name.

A good number of tests seem to fail though, so not sure if this is a good chck.

  • [ ] Closes #xxxx
  • [ ] Tests added
  • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [ ] New functions/methods are listed in api.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8906/reactions",
    "total_count": 2,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 2,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1997636679 PR_kwDOAMm_X85frAC_ 8460 Add initialize_zarr dcherian 2448579 open 0     8 2023-11-16T19:45:05Z 2024-04-02T15:08:01Z   MEMBER   1 pydata/xarray/pulls/8460
  • [x] Closes #8343
  • [x] Tests added
  • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [x] New functions/methods are listed in api.rst

The intended pattern is: ```python

after_init = initialize_zarr(store, ds, region_dims=("x",))
for i in range(ds.sizes["x"]):
    after_init.isel(x=[i]).to_zarr(store, region={"x": slice(i, i + 1)})

```

cc @slevang

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8460/reactions",
    "total_count": 5,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 3,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 2
}
    xarray 13221727 pull
2021856935 PR_kwDOAMm_X85g81gb 8509 Proof of concept - public Grouper objects dcherian 2448579 open 0     0 2023-12-02T04:52:27Z 2024-03-15T05:18:18Z   MEMBER   1 pydata/xarray/pulls/8509

Not for merging, just proof that it can be done nicely :)

Now builds on #8840 ~Builds on an older version of #8507~

Try it out!

```python import xarray as xr from xarray.core.groupers import SeasonGrouper, SeasonResampler

ds = xr.tutorial.open_dataset("air_temperature")

custom seasons!

ds.air.groupby(time=SeasonGrouper(["JF", "MAM", "JJAS", "OND"])).mean()

ds.air.resample(time=SeasonResampler(["DJF", "MAM", "JJAS", "ON"])).count() ```

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8509/reactions",
    "total_count": 2,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1975400777 PR_kwDOAMm_X85efqSl 8408 Generalize explicit_indexing_adapter dcherian 2448579 open 0     0 2023-11-03T03:29:40Z 2023-11-03T03:53:25Z   MEMBER   1 pydata/xarray/pulls/8408

Use as_indexable instead of NumpyIndexingAdapter

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8408/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1902086612 PR_kwDOAMm_X85aoYuf 8206 flox: Set fill_value=np.nan always. dcherian 2448579 open 0     0 2023-09-19T02:19:49Z 2023-09-19T02:23:26Z   MEMBER   1 pydata/xarray/pulls/8206
  • [x] Closes #8090
  • [x] Tests added
  • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [ ] New functions/methods are listed in api.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8206/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
923355397 MDExOlB1bGxSZXF1ZXN0NjcyMTI5NzY4 5480 Implement weighted groupby dcherian 2448579 open 0     1 2021-06-17T02:57:17Z 2023-07-27T18:09:55Z   MEMBER   1 pydata/xarray/pulls/5480
  • xref #3937
  • [ ] Tests added
  • [ ] Passes pre-commit run --all-files
  • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [ ] New functions/methods are listed in api.rst

Initial proof-of-concept. Suggestions to improve this are very welcome.

Here's some convenient testing code ``` python
import xarray as xr

ds = xr.tutorial.open_dataset('rasm').load() month_length = ds.time.dt.days_in_month weights = month_length.groupby('time.season') / month_length.groupby('time.season').sum()

actual = ds.weighted(month_length).groupby("time.season").mean() expected = (ds * weights).groupby('time.season').sum(skipna=False) xr.testing.assert_allclose(actual, expected) ```

I've added info to the repr python ds.weighted(month_length).groupby("time.season") WeightedDatasetGroupBy, grouped over 'season' 4 groups with labels 'DJF', 'JJA', 'MAM', 'SON'. weighted along dimensions: time by 'days_in_month'

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5480/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1700678362 PR_kwDOAMm_X85QBdXY 7828 GroupBy: Fix reducing by subset of grouper dims dcherian 2448579 open 0     0 2023-05-08T18:00:54Z 2023-05-10T02:41:39Z   MEMBER   1 pydata/xarray/pulls/7828
  • [x] Tests added

Fixes yet another bug with GroupBy reductions. We weren't assigning the group index when reducing by a subset of dimensions present on the grouper

This will only pass when flox 0.7.1 reaches conda-forge.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/7828/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
802525282 MDExOlB1bGxSZXF1ZXN0NTY4NjUzOTg0 4868 facets and hue with hist dcherian 2448579 open 0     0 2021-02-05T22:49:36Z 2022-10-19T07:27:32Z   MEMBER   0 pydata/xarray/pulls/4868
  • [x] Closes #4288
  • [ ] Tests added
  • [x] Passes pre-commit run --all-files
  • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [ ] New functions/methods are listed in api.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4868/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
802431534 MDExOlB1bGxSZXF1ZXN0NTY4NTc1NzIw 4866 Refactor line plotting dcherian 2448579 open 0     0 2021-02-05T19:51:24Z 2022-10-18T20:13:14Z   MEMBER   0 pydata/xarray/pulls/4866

Refactors line plotting to use a _plot1d decorator.

Next i'll use this decorator on hist so we can "facet" and "hue" histograms.

see #4288

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4866/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
540451721 MDExOlB1bGxSZXF1ZXN0MzU1MjU4NjMy 3646 [WIP] GroupBy plotting dcherian 2448579 open 0     7 2019-12-19T17:26:39Z 2022-06-09T14:50:17Z   MEMBER   1 pydata/xarray/pulls/3646
  • [x] Tests added
  • [x] Passes black . && mypy . && flake8
  • [ ] Fully documented, including whats-new.rst for all changes and api.rst for new API

This adds plotting methods to GroupBy objects so that it's easy to plot each group as a facet. I'm finding this super helpful in my current research project.

It's pretty self-contained, mostly just adding map_groupby* methods to FacetGrid. But that's because I make GroupBy mimic the underlying DataArray by adding coords, attrs and __getitem__.

This still needs more tests but I would like feedback on the feature and the implementation.

Example

``` python import numpy as np import xarray as xr

time = np.arange(80) da = xr.DataArray(5 * np.sin(2np.pitime/10), coords={"time": time}, dims="time") da["period"] = da.time.where((time % 10) == 0).ffill("time")/10 da.plot() ```

python da.groupby("period").plot(col="period", col_wrap=4)

python da = da.expand_dims(y=10) da.groupby("period").plot(col="period", col_wrap=4, sharex=False, sharey=True, robust=True)

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3646/reactions",
    "total_count": 3,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 1,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 53.707ms · About: xarray-datasette