home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

2 rows where state = "open", type = "issue" and user = 8699967 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

type 1

  • issue · 2 ✖

state 1

  • open · 2 ✖

repo 1

  • xarray 2
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
1227144046 I_kwDOAMm_X85JJLtu 6577 ENH: list_engines function snowman2 8699967 open 0     4 2022-05-05T20:27:14Z 2023-01-13T17:30:14Z   CONTRIBUTOR      

Is your feature request related to a problem?

It can be difficult to know what engines are available and where they come from. This could help with that.

Describe the solution you'd like

python import xarray xarray.list_engines() Output: ``` Name | Description | Documentation


rasterio | Open geospatial files (GeoTiff) | https://corteva.github.io/rioxarray ```

Describe alternatives you've considered

No response

Additional context

No response

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/6577/reactions",
    "total_count": 2,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue
893714363 MDU6SXNzdWU4OTM3MTQzNjM= 5327 ENH: Preserve attrs when converting to pandas dataframe snowman2 8699967 open 0     0 2021-05-17T21:06:26Z 2021-05-17T21:06:26Z   CONTRIBUTOR      

Is your feature request related to a problem? Please describe. ```python import xarray

xds = xarray.DataArray([1], name="a", dims="a", attrs={"long_name": "Description about data"}) python xds.attrs Output: {'long_name': 'Description about data'} python xds.to_dataframe().a.attrs Output: {} `` **Describe the solution you'd like** It would be nice if the attributes of the DataArray were preserved in eachpandas.Seriesand the attributes of eachDatasetwere preserved on thepandas.Dataframe`

Additional context

Things to be wary about is that it the pandas documentation says the attrs is experimental.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5327/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 20.053ms · About: xarray-datasette