issues
1 row where state = "open", type = "issue" and user = 74414841 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 882105903 | MDU6SXNzdWU4ODIxMDU5MDM= | 5281 | 'Parallelized' apply_ufunc for scripy.interpolate.griddata | LJaksic 74414841 | open | 0 | 4 | 2021-05-09T10:08:46Z | 2022-04-09T01:39:13Z | NONE | Hi, I'm working with large files from an ocean model with an unstructered grid. For instance, variable flow velocity For smaller computational domains (smaller nFlowElement dimension) I ám still able to load the dataarray in my work memory. Then, the following code gives me the wanted result: ``` def interp_to_grid(u,xc,yc,xint,yint): print(u.shape,xc.shape,xint.shape) ug = griddata((xc,yc),u,(xint,yint), method='nearest', fill_value=np.nan) return ug uxg = xr.apply_ufunc(interp_to_grid,
ux, xc, yc, xint, yint,
dask = 'allowed',
input_core_dims=[['nFlowElem','time','laydim'],['nFlowElem'],['nFlowElem'],['dim_0','dim_1'],['dim_0','dim_1']],
output_core_dims=[['dim_0','dim_1','time','laydim']],
output_dtypes = [xr.DataArray]
)
However, for much larger spatial domains it is required to work with dask = 'parallelized', because these input dataarrays can nolonger be loaded into my working memory. I have tried to apply chunks over the time dimension, but also over the nFlowElement dimension. I am aware that it is not possible to chunk over core dimensions. This is one of my "parallel" attempts (with chunks along the time dim): Input ux:
File "interpnd.pyx", line 192, in scipy.interpolate.interpnd._check_init_shape ValueError: different number of values and points
Any advice is very welcome! Best Wishes, Luka |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/5281/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);