issues
4 rows where state = "open", type = "issue" and user = 5797727 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1169750048 | I_kwDOAMm_X85FuPgg | 6360 | Multidimensional `interpolate_na()` | iuryt 5797727 | open | 0 | 4 | 2022-03-15T14:27:46Z | 2023-09-28T11:51:20Z | NONE | Is your feature request related to a problem?I think that having a way to run a multidimensional interpolation for filling missing values would be awesome. The code snippet below create a data and show the problem I am having now. If the data has some orientation, we couldn't simply interpolate dimensions separately. ```python import xarray as xr import numpy as np n = 30 x = xr.DataArray(np.linspace(0,2np.pi,n),dims=['x']) y = xr.DataArray(np.linspace(0,2np.pi,n),dims=['y']) z = (np.sin(x)*xr.ones_like(y)) mask = xr.DataArray(np.random.randint(0,1+1,(n,n)).astype('bool'),dims=['x','y']) kw = dict(add_colorbar=False) fig,ax = plt.subplots(1,3,figsize=(11,3)) z.plot(ax=ax[0],kw) z.where(mask).plot(ax=ax[1],kw) z.where(mask).interpolate_na('x').plot(ax=ax[2],**kw) ``` I tried to use advanced interpolation for that, but it doesn't look like the best solution. ```python zs = z.where(mask).stack(k=['x','y']) zs = zs.where(np.isnan(zs),drop=True) xi,yi = zs.k.x.drop('k'),zs.k.y.drop('k') zi = z.interp(x=xi,y=yi) fig,ax = plt.subplots() z.where(mask).plot(ax=ax,kw) ax.scatter(xi,yi,c=zi,kw,linewidth=1,edgecolor='k') ``` returns Describe the solution you'd likeSimply Describe alternatives you've consideredI could extract the data to Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6360/reactions", "total_count": 11, "+1": 9, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 2 } |
xarray 13221727 | issue | ||||||||
1592154849 | I_kwDOAMm_X85e5lrh | 7542 | `OSError: [Errno -70] NetCDF: DAP server error` when `parallel=True` on a cluster | iuryt 5797727 | open | 0 | 1 | 2023-02-20T16:27:11Z | 2023-03-20T17:53:39Z | NONE | What is your issue?Hi, I am trying to access MERRA-2 dataset using The code runs well if @betolink suspected that the workers doesn’t know the authentication and suggested me to do something like mentioned in @rsignell issue. Which would involve adding It is important to say that Has anyone faced this problem before or has any guesses on how to solve this issue? ```python ----------------------------------Import Python modules----------------------------------import warnings warnings.filterwarnings("ignore") import xarray as xr import matplotlib.pyplot as plt from calendar import monthrange create_cluster = True parallel = True upload_file = True if create_cluster: # -------------------------------------- # Creating 50 workers with 1core and 2Gb each # -------------------------------------- import os from dask_jobqueue import SLURMCluster from dask.distributed import Client from dask.distributed import WorkerPlugin
---------------------------------Read data---------------------------------MERRA-2 collection (hourly)collection_shortname = 'M2T1NXAER'
collection_longname = 'tavg1_2d_aer_Nx'
collection_number = 'MERRA2_400' Open datasetRead selected days in the same month and yearmonth = 1 # January day_beg = 1 day_end = 31 Note that collection_number is MERRA2_401 in a few cases, refer to "Records of MERRA-2 Data Reprocessing and Service Changes"if year == 2020 and month == 9: collection_number = 'MERRA2_401' OPeNDAP URLurl = 'https://goldsmr4.gesdisc.eosdis.nasa.gov/opendap/MERRA2/{}.{}/{}/{:0>2d}'.format(collection_shortname, MERRA2_version, year, month) files_month = ['{}/{}.{}.{}{:0>2d}{:0>2d}.nc4'.format(url,collection_number, collection_longname, year, month, days) for days in range(day_beg,day_end+1,1)] Get the number of fileslen_files_month=len(files_month) print("{} files to be opened:".format(len_files_month)) print("files_month", files_month) Read dataset URLsds = xr.open_mfdataset(files_month, parallel=parallel) View metadata (function like ncdump -c)ds ``` As this deals with HPCs, I also posted on pangeo forum https://discourse.pangeo.io/t/access-ges-disc-nasa-dataset-using-xarray-and-dask-on-a-cluster/3195/1 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7542/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1340669247 | I_kwDOAMm_X85P6P0_ | 6922 | Support for matplotlib mosaic using variable names | iuryt 5797727 | open | 0 | 1 | 2022-08-16T17:31:23Z | 2022-08-17T05:35:39Z | NONE | Is your feature request related to a problem?This is not related to any problem, but I think it would be nice to have a support for giving a Describe the solution you'd likeSomething like ```python import matplotlib.pyplot as plt import xarray as xr import numpy as np n = 200 t = np.linspace(0,32np.pi,n) ds = xr.Dataset({letter:(("s","t"),np.sin(t)+0.5*np.random.randn(3,n)) for letter in "A B C D E".split()}) ds = ds.assign_coords(t=t,s=range(3)) mosaic = [ ["A","A","B","B","C","C"], ["X","D","D","E","E","X"], ] kw = dict(x="t",hue="s",add_legend=False) ds.plot.line(mosaic=mosaic,empty_sentinel="X",**kw) ```
Describe alternatives you've consideredI have a code snippet that generate similar results but with more code. ```python import matplotlib.pyplot as plt import xarray as xr import numpy as np n = 200 t = np.linspace(0,32np.pi,n) ds = xr.Dataset({letter:(("s","t"),np.sin(t)+0.5*np.random.randn(3,n)) for letter in "A B C D E".split()}) ds = ds.assign_coords(t=t,s=range(3)) mosaic = [ ["A","A","B","B","C","C"], ["X","D","D","E","E","X"], ] kw = dict(x="t",hue="s",add_legend=False) fig = plt.figure(constrained_layout=True,figsize=(8,4)) ax = fig.subplot_mosaic(mosaic,empty_sentinel="X") for key in ds: ds[key].plot.line(ax=ax[key],**kw) ``` Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6922/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
782848816 | MDU6SXNzdWU3ODI4NDg4MTY= | 4787 | Pass `locator` argument to matplotlib when calling `plot.contourf` | iuryt 5797727 | open | 0 | 3 | 2021-01-10T16:04:26Z | 2021-01-11T17:41:52Z | NONE | Is your feature request related to a problem? Please describe.
Everytime I have to do a Describe the solution you'd like
Being Describe alternatives you've considered
I usually have to do |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4787/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);