home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

1 row where state = "open", type = "issue" and user = 31126826 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

type 1

  • issue · 1 ✖

state 1

  • open · 1 ✖

repo 1

  • xarray 1
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
666270493 MDU6SXNzdWU2NjYyNzA0OTM= 4275 Interpolation along dimension with a single element mancellin 31126826 open 0     3 2020-07-27T12:52:35Z 2022-05-21T20:50:29Z   CONTRIBUTOR      

Let me consider a DataArray with a dimension containing a single element:

```python In [1]: import numpy as np

In [2]: import xarray as xr

In [3]: da = xr.DataArray(np.linspace(0.0, 100.0, 101).reshape(1, 101), coords=[('x', [1.0]), ('y', np.linspace(0.0, 1.0, 101))]) ```

Asking x=1.0 in interp fails.

More precisely, the 2D interpolation returns a NaN python In [5]: da.interp(x=1.0, y=0.4) /opt/anaconda3/lib/python3.7/site-packages/scipy/interpolate/interpolate.py:2533: RuntimeWarning: invalid value encountered in true_divide (grid[i + 1] - grid[i])) Out[5]: <xarray.DataArray ()> array(nan) Coordinates: x float64 1.0 y float64 0.4 and the 1D interpolation returns a ValueError: ```python In [6]: da.interp(x=1.0)


ValueError Traceback (most recent call last) <ipython-input-6-efd4490bc97e> in <module> ----> 1 da.interp(x=1.0) ... ValueError: x and y arrays must have at least 2 entries ```

I understand why the interpolation is impossible in an array with a single element.

However, this behavior breaks my assumption that interp is a superset of sel, meaning that it gives the same result as sel for all inputs that are valid inputs for sel (except for a possible int to float type conversion).

Here, I would expect da.interp(x=1.0) to give me the same result as da.sel(x=1.0).

What do you think of this corner case?

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4275/reactions",
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 1761.397ms · About: xarray-datasette