issues
1 row where state = "open", type = "issue" and user = 102827 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
289342234 | MDU6SXNzdWUyODkzNDIyMzQ= | 1836 | HDF5 error when working with compressed NetCDF files and the dask multiprocessing scheduler | cchwala 102827 | open | 0 | 5 | 2018-01-17T17:05:56Z | 2022-06-21T14:50:02Z | CONTRIBUTOR | Code Sample, a copy-pastable example if possible```python import xarray as xr import numpy as np import dask.multiprocessing Generate dummy data and build xarray datasetmat = np.random.rand(10, 90, 90) ds = xr.Dataset(data_vars={'foo': (('time', 'x', 'y'), mat)}) Write dataset to netcdf without compressionds.to_netcdf('dummy_data_3d.nc') Write with zlib compersisonds.to_netcdf('dummy_data_3d_with_compression.nc', encoding={'foo': {'zlib': True}}) Write data as int16 with scale factor appliedds.to_netcdf('dummy_data_3d_with_scale_factor.nc', encoding={'foo': {'dtype': 'int16', 'scale_factor': 0.01, '_FillValue': -9999}}) Load data from netCDF filesds_vanilla = xr.open_dataset('dummy_data_3d.nc', chunks={'time': 1}) ds_scaled = xr.open_dataset('dummy_data_3d_with_scale_factor.nc', chunks={'time': 1}) ds_compressed = xr.open_dataset('dummy_data_3d_with_compression.nc', chunks={'time': 1}) Do computation using dask's multiprocessing schedulerfoo = ds_vanilla.foo.mean(dim=['x', 'y']).compute(get=dask.multiprocessing.get) foo = ds_scaled.foo.mean(dim=['x', 'y']).compute(get=dask.multiprocessing.get) foo = ds_compressed.foo.mean(dim=['x', 'y']).compute(get=dask.multiprocessing.get) The last line fails``` Problem descriptionIf NetCDF files are compressed (which is often the case) and opened with chunking enabled to use them with dask, computations using the multiprocessing scheduler fail. The above code shows this in a short example. The last line fails with a long HDF5 error log:
```
HDF5-DIAG: Error detected in HDF5 (1.10.1) thread 140736213758912:
#000: H5Dio.c line 171 in H5Dread(): can't read data
major: Dataset
minor: Read failed
#001: H5Dio.c line 544 in H5D__read(): can't read data
major: Dataset
minor: Read failed
#002: H5Dchunk.c line 2022 in H5D__chunk_read(): error looking up chunk address
major: Dataset
minor: Can't get value
#003: H5Dchunk.c line 2768 in H5D__chunk_lookup(): can't query chunk address
major: Dataset
minor: Can't get value
#004: H5Dbtree.c line 1047 in H5D__btree_idx_get_addr(): can't get chunk info
major: Dataset
minor: Can't get value
#005: H5B.c line 341 in H5B_find(): unable to load B-tree node
major: B-Tree node
minor: Unable to protect metadata
#006: H5AC.c line 1763 in H5AC_protect(): H5C_protect() failed
major: Object cache
minor: Unable to protect metadata
#007: H5C.c line 2561 in H5C_protect(): can't load entry
major: Object cache
minor: Unable to load metadata into cache
#008: H5C.c line 6877 in H5C_load_entry(): Can't deserialize image
major: Object cache
minor: Unable to load metadata into cache
#009: H5Bcache.c line 181 in H5B__cache_deserialize(): wrong B-tree signature
major: B-Tree node
minor: Bad value
Traceback (most recent call last):
File "hdf5_bug_minimal_working_example.py", line 27, in <module>
foo = ds_compressed.foo.mean(dim=['x', 'y']).compute(get=dask.multiprocessing.get)
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/xarray/core/dataarray.py", line 658, in compute
return new.load(**kwargs)
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/xarray/core/dataarray.py", line 632, in load
ds = self._to_temp_dataset().load(**kwargs)
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/xarray/core/dataset.py", line 491, in load
evaluated_data = da.compute(*lazy_data.values(), **kwargs)
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/dask/base.py", line 333, in compute
results = get(dsk, keys, **kwargs)
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/dask/multiprocessing.py", line 177, in get
raise_exception=reraise, **kwargs)
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/dask/local.py", line 521, in get_async
raise_exception(exc, tb)
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/dask/local.py", line 290, in execute_task
result = _execute_task(task, data)
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/dask/local.py", line 270, in _execute_task
args2 = [_execute_task(a, cache) for a in args]
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/dask/local.py", line 270, in _execute_task
args2 = [_execute_task(a, cache) for a in args]
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/dask/local.py", line 267, in _execute_task
return [_execute_task(a, cache) for a in arg]
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/dask/local.py", line 271, in _execute_task
return func(*args2)
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/dask/array/core.py", line 72, in getter
c = np.asarray(c)
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/numpy/core/numeric.py", line 531, in asarray
return array(a, dtype, copy=False, order=order)
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/xarray/core/indexing.py", line 538, in __array__
return np.asarray(self.array, dtype=dtype)
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/numpy/core/numeric.py", line 531, in asarray
return array(a, dtype, copy=False, order=order)
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/xarray/core/indexing.py", line 505, in __array__
return np.asarray(array[self.key], dtype=None)
File "/Users/chwala-c/miniconda2/lib/python2.7/site-packages/xarray/backends/netCDF4_.py", line 61, in __getitem__
data = getitem(self.get_array(), key)
File "netCDF4/_netCDF4.pyx", line 3961, in netCDF4._netCDF4.Variable.__getitem__
File "netCDF4/_netCDF4.pyx", line 4798, in netCDF4._netCDF4.Variable._get
File "netCDF4/_netCDF4.pyx", line 1638, in netCDF4._netCDF4._ensure_nc_success
RuntimeError: NetCDF: HDF error
```
A possible workaround, if the dataset fits into memory, is to use
Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1836/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);