issues
1 row where state = "closed" and user = 6475152 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
496460488 | MDU6SXNzdWU0OTY0NjA0ODg= | 3326 | quantile with Dask arrays | jkmacc-LANL 6475152 | closed | 0 | 0 | 2019-09-20T17:14:59Z | 2019-11-25T15:57:49Z | 2019-11-25T15:57:49Z | NONE | Currently the
The problem with following the suggestion of the exception (loading the array into memory) is that "wide and shallow" arrays are too big to load into memory, yet each chunk is statistically independent if the quantile dimension is the "shallow" dimension. I'm not necessarily proposing delegating to Dask's quantile (unless it's super easy), but wanted to explore this special case described above. Related links: Thank you! EDIT: added stackoverflow link |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3326/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);