issues
6 rows where state = "closed" and user = 5637662 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, updated_at, closed_at, state_reason, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
818944970 | MDU6SXNzdWU4MTg5NDQ5NzA= | 4975 | scatter plot with row or col gets hue wrong | dschwoerer 5637662 | closed | 0 | 3 | 2021-03-01T14:54:57Z | 2023-03-13T19:47:51Z | 2023-03-13T19:47:51Z | CONTRIBUTOR | What happened: The colorbar/hue is only for the last subplot, the colorbar for the other figures is ignored. What you expected to happen: hue/colorbar is correct - the total min/max values are calculated and used instead. Minimal Complete Verifiable Example: ```python import xarray as xr import numpy as np ds=xr.Dataset() ds["a"]=("x","y"), np.arange(4).reshape(2,2) ds.plot.scatter("a","a",row="x", hue="a") import matplotlib.pyplot as plt plt.show() ``` Anything else we need to know?: replacing col for row yields same wrong result I verified this is in master (5735e163bea43ec9bc3c2e640fbf25a1d4a9d0c0) and 0.16.2 Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.9.1 (default, Jan 20 2021, 00:00:00) [GCC 10.2.1 20201125 (Red Hat 10.2.1-9)] python-bits: 64 OS: Linux OS-release: 4.12.14-122.57-default machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.3 xarray: 0.16.2 pandas: 1.0.5 numpy: 1.19.4 scipy: 1.5.2 netCDF4: 1.5.3 pydap: None h5netcdf: None h5py: 3.1.0 Nio: None zarr: None cftime: 1.1.3 nc_time_axis: 1.2.0 PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.2.1 dask: 2021.01.1 distributed: None matplotlib: 3.3.4 cartopy: None seaborn: None numbagg: None pint: None setuptools: 49.1.3 pip: 20.2.2 conda: None pytest: None IPython: 7.18.1 sphinx: 3.2.1 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4975/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
987551524 | MDU6SXNzdWU5ODc1NTE1MjQ= | 5762 | Plotting of labelled data fails | dschwoerer 5637662 | closed | 0 | 3 | 2021-09-03T08:45:34Z | 2023-03-10T20:01:19Z | 2023-03-10T20:01:18Z | CONTRIBUTOR | What happened: Xarray has some assumption what is or is not plottable. Xarray should not do that, and just ask the plotting library, if it actually can. What you expected to happen: No additional checking, just plot it. If something cannot be plotted, matplotlib (or whatever backend is used) will anyway check, and know better. Minimal Complete Verifiable Example: ```python import xarray as xr import matplotlib.pyplot as plt da = xr.DataArray(data=[1, 2], coords={"x": ["abc", "cde"]}, dims="x") print(da) try: da.plot() except TypeError: plt.plot(da.x, da) print("But it is possible") plt.show() ``` Anything else we need to know?:
I can submit a PR to remove Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: fcebe5e5f3bcd2d93df614966431c845384a3b2f python: 3.9.7 (default, Aug 30 2021, 00:00:00) [GCC 11.2.1 20210728 (Red Hat 11.2.1-1)] python-bits: 64 OS: Linux OS-release: 5.13.12-200.fc34.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.3 xarray: 0.18.2 pandas: 1.2.5 numpy: 1.20.1 scipy: 1.6.2 netCDF4: 1.5.5.1 pydap: None h5netcdf: None h5py: 3.1.0 Nio: None zarr: None cftime: 1.4.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.2.1 dask: 2021.08.1 distributed: None matplotlib: 3.4.3 cartopy: None seaborn: None numbagg: None pint: 0.16.1 setuptools: 54.2.0 pip: 21.0.1 conda: None pytest: 6.2.2 IPython: 7.20.0 sphinx: 3.4.3 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5762/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
not_planned | xarray 13221727 | issue | ||||||
1412895383 | I_kwDOAMm_X85UNxKX | 7181 | xarray 2022.10.0 much slower then 2022.6.0 | dschwoerer 5637662 | closed | 0 | 17 | 2022-10-18T09:38:52Z | 2022-11-30T23:36:56Z | 2022-11-30T23:36:56Z | CONTRIBUTOR | What is your issue?xbout's test suite finishes with 2022.6.0 in less than an our, with 2022.10.0 it gets aborted after 6 hours. I haven't managed to debug what is the issue. Git bisect will not work, as 2022.9.0 is broken due to #7111 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7181/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
819030802 | MDExOlB1bGxSZXF1ZXN0NTgyMTk4MjUx | 4978 | ensure all plots share the same hue | dschwoerer 5637662 | closed | 0 | 3 | 2021-03-01T16:23:45Z | 2021-05-14T17:24:18Z | 2021-05-14T17:24:18Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/4978 | by specifing vmin and vmax, the colorbar is the correct one for all subplots
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4978/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
805389572 | MDU6SXNzdWU4MDUzODk1NzI= | 4885 | Dataset.mean changes variables without specified dimension | dschwoerer 5637662 | closed | 0 | 2 | 2021-02-10T10:37:07Z | 2021-04-24T20:00:45Z | 2021-04-24T20:00:45Z | CONTRIBUTOR | What happened:
If I apply What you expected to happen: Variables without the dimension are not changed. Minimal Complete Verifiable Example: ```python import xarray as xr ds = xr.Dataset() ds["pos"] = [1, 2, 3] ds["data"] = ("pos", "time"), [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]] ds["var"] = "pos", [2, 3, 4] print(ds.mean(dim="time")) ``` Anything else we need to know?:
That makes it unnecessarily slow, as variables without that dimensions wouldn't need to be read from disk.
It is easy enough to work around:
Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.9.1 (default, Jan 20 2021, 00:00:00) [GCC 10.2.1 20201125 (Red Hat 10.2.1-9)] python-bits: 64 OS: Linux OS-release: 5.10.13-200.fc33.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.3 xarray: 0.16.2 pandas: 1.0.5 numpy: 1.19.4 scipy: 1.5.2 netCDF4: 1.5.3 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.1.3 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.2.1 dask: None distributed: None matplotlib: 3.3.4 cartopy: None seaborn: None numbagg: None pint: 0.13 setuptools: 49.1.3 pip: 20.2.2 conda: None pytest: 6.0.2 IPython: 7.18.1 sphinx: 3.2.1 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4885/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
865002281 | MDExOlB1bGxSZXF1ZXN0NjIxMTM2NzUw | 5207 | Skip mean over empty axis | dschwoerer 5637662 | closed | 0 | 3 | 2021-04-22T14:13:33Z | 2021-04-24T20:00:45Z | 2021-04-24T20:00:45Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5207 | Avoids changing the datatype if the data does not have the requested axis.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5207/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);