home / github

Menu
  • Search all tables
  • GraphQL API

issues

Table actions
  • GraphQL API for issues

6 rows where state = "closed" and user = 5637662 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: comments, updated_at, closed_at, state_reason, created_at (date), updated_at (date), closed_at (date)

type 2

  • issue 4
  • pull 2

state 1

  • closed · 6 ✖

repo 1

  • xarray 6
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
818944970 MDU6SXNzdWU4MTg5NDQ5NzA= 4975 scatter plot with row or col gets hue wrong dschwoerer 5637662 closed 0     3 2021-03-01T14:54:57Z 2023-03-13T19:47:51Z 2023-03-13T19:47:51Z CONTRIBUTOR      

What happened: The colorbar/hue is only for the last subplot, the colorbar for the other figures is ignored.

What you expected to happen: hue/colorbar is correct - the total min/max values are calculated and used instead.

Minimal Complete Verifiable Example:

```python import xarray as xr import numpy as np

ds=xr.Dataset() ds["a"]=("x","y"), np.arange(4).reshape(2,2)

ds.plot.scatter("a","a",row="x", hue="a") import matplotlib.pyplot as plt plt.show() ```

Anything else we need to know?: replacing col for row yields same wrong result

I verified this is in master (5735e163bea43ec9bc3c2e640fbf25a1d4a9d0c0) and 0.16.2

Environment:

Output of <tt>xr.show_versions()</tt> INSTALLED VERSIONS ------------------ commit: None python: 3.9.1 (default, Jan 20 2021, 00:00:00) [GCC 10.2.1 20201125 (Red Hat 10.2.1-9)] python-bits: 64 OS: Linux OS-release: 4.12.14-122.57-default machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.3 xarray: 0.16.2 pandas: 1.0.5 numpy: 1.19.4 scipy: 1.5.2 netCDF4: 1.5.3 pydap: None h5netcdf: None h5py: 3.1.0 Nio: None zarr: None cftime: 1.1.3 nc_time_axis: 1.2.0 PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.2.1 dask: 2021.01.1 distributed: None matplotlib: 3.3.4 cartopy: None seaborn: None numbagg: None pint: None setuptools: 49.1.3 pip: 20.2.2 conda: None pytest: None IPython: 7.18.1 sphinx: 3.2.1
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4975/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
987551524 MDU6SXNzdWU5ODc1NTE1MjQ= 5762 Plotting of labelled data fails dschwoerer 5637662 closed 0     3 2021-09-03T08:45:34Z 2023-03-10T20:01:19Z 2023-03-10T20:01:18Z CONTRIBUTOR      

What happened: Xarray has some assumption what is or is not plottable. Xarray should not do that, and just ask the plotting library, if it actually can.

What you expected to happen: No additional checking, just plot it.

If something cannot be plotted, matplotlib (or whatever backend is used) will anyway check, and know better.

Minimal Complete Verifiable Example:

```python import xarray as xr import matplotlib.pyplot as plt

da = xr.DataArray(data=[1, 2], coords={"x": ["abc", "cde"]}, dims="x") print(da) try: da.plot() except TypeError: plt.plot(da.x, da) print("But it is possible") plt.show() ```

Anything else we need to know?: I can submit a PR to remove _ensure_plottable

Environment:

Output of <tt>xr.show_versions()</tt> INSTALLED VERSIONS ------------------ commit: fcebe5e5f3bcd2d93df614966431c845384a3b2f python: 3.9.7 (default, Aug 30 2021, 00:00:00) [GCC 11.2.1 20210728 (Red Hat 11.2.1-1)] python-bits: 64 OS: Linux OS-release: 5.13.12-200.fc34.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.3 xarray: 0.18.2 pandas: 1.2.5 numpy: 1.20.1 scipy: 1.6.2 netCDF4: 1.5.5.1 pydap: None h5netcdf: None h5py: 3.1.0 Nio: None zarr: None cftime: 1.4.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.2.1 dask: 2021.08.1 distributed: None matplotlib: 3.4.3 cartopy: None seaborn: None numbagg: None pint: 0.16.1 setuptools: 54.2.0 pip: 21.0.1 conda: None pytest: 6.2.2 IPython: 7.20.0 sphinx: 3.4.3
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5762/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  not_planned xarray 13221727 issue
1412895383 I_kwDOAMm_X85UNxKX 7181 xarray 2022.10.0 much slower then 2022.6.0 dschwoerer 5637662 closed 0     17 2022-10-18T09:38:52Z 2022-11-30T23:36:56Z 2022-11-30T23:36:56Z CONTRIBUTOR      

What is your issue?

xbout's test suite finishes with 2022.6.0 in less than an our, with 2022.10.0 it gets aborted after 6 hours.

I haven't managed to debug what is the issue.

Git bisect will not work, as 2022.9.0 is broken due to #7111

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/7181/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
819030802 MDExOlB1bGxSZXF1ZXN0NTgyMTk4MjUx 4978 ensure all plots share the same hue dschwoerer 5637662 closed 0     3 2021-03-01T16:23:45Z 2021-05-14T17:24:18Z 2021-05-14T17:24:18Z CONTRIBUTOR   0 pydata/xarray/pulls/4978

by specifing vmin and vmax, the colorbar is the correct one for all subplots

  • [x] Closes #4975
  • [ ] Tests added
  • [ ] Passes pre-commit run --all-files
  • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [ ] New functions/methods are listed in api.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4978/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
805389572 MDU6SXNzdWU4MDUzODk1NzI= 4885 Dataset.mean changes variables without specified dimension dschwoerer 5637662 closed 0     2 2021-02-10T10:37:07Z 2021-04-24T20:00:45Z 2021-04-24T20:00:45Z CONTRIBUTOR      

What happened: If I apply mean(dim='time') on a dataset, variables without that dimension are changed.

What you expected to happen: Variables without the dimension are not changed.

Minimal Complete Verifiable Example:

```python import xarray as xr

ds = xr.Dataset() ds["pos"] = [1, 2, 3] ds["data"] = ("pos", "time"), [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]] ds["var"] = "pos", [2, 3, 4] print(ds.mean(dim="time")) ```

Anything else we need to know?: That makes it unnecessarily slow, as variables without that dimensions wouldn't need to be read from disk. It is easy enough to work around: python ds2 = ds.copy() for k in ds: if "time" in ds[k].dims: ds2[k] = ds[k].mean(dim="time") However I cannot see why dataset should change the variables without the specified dim.

Environment:

Output of <tt>xr.show_versions()</tt> INSTALLED VERSIONS ------------------ commit: None python: 3.9.1 (default, Jan 20 2021, 00:00:00) [GCC 10.2.1 20201125 (Red Hat 10.2.1-9)] python-bits: 64 OS: Linux OS-release: 5.10.13-200.fc33.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.3 xarray: 0.16.2 pandas: 1.0.5 numpy: 1.19.4 scipy: 1.5.2 netCDF4: 1.5.3 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.1.3 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.2.1 dask: None distributed: None matplotlib: 3.3.4 cartopy: None seaborn: None numbagg: None pint: 0.13 setuptools: 49.1.3 pip: 20.2.2 conda: None pytest: 6.0.2 IPython: 7.18.1 sphinx: 3.2.1
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4885/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
865002281 MDExOlB1bGxSZXF1ZXN0NjIxMTM2NzUw 5207 Skip mean over empty axis dschwoerer 5637662 closed 0     3 2021-04-22T14:13:33Z 2021-04-24T20:00:45Z 2021-04-24T20:00:45Z CONTRIBUTOR   0 pydata/xarray/pulls/5207

Avoids changing the datatype if the data does not have the requested axis.

  • [x] Closes #4885
  • [x] Tests added
  • [ ] Passes pre-commit run --all-files
  • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5207/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 2958.664ms · About: xarray-datasette