issues
3 rows where state = "closed" and user = 25231875 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1445905299 | I_kwDOAMm_X85WLsOT | 7282 | groupby and mean on a MultiIndex level raises ValueError | jjpr-mit 25231875 | closed | 0 | 4 | 2022-11-11T19:15:58Z | 2023-10-30T09:18:54Z | 2023-08-31T03:50:33Z | NONE | What happened?After using What did you expect to happen?Apply mean to groups, no error. Minimal Complete Verifiable Example
MVCE confirmation
Relevant log output
Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.7 (main, Sep 13 2022, 14:31:33) [GCC 10.2.1 20210110]
python-bits: 64
OS: Linux
OS-release: 5.15.49-linuxkit
machine: x86_64
processor:
byteorder: little
LC_ALL: None
LANG: C.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: None
libnetcdf: None
xarray: 2022.11.0
pandas: 1.5.1
numpy: 1.23.4
scipy: None
netCDF4: None
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: None
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: None
distributed: None
matplotlib: None
cartopy: None
seaborn: None
numbagg: None
fsspec: None
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 63.2.0
pip: 22.2.2
conda: None
pytest: None
IPython: None
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7282/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
257070215 | MDU6SXNzdWUyNTcwNzAyMTU= | 1569 | Grouping with multiple levels | jjpr-mit 25231875 | closed | 0 | 6 | 2017-09-12T14:46:12Z | 2022-04-09T15:25:07Z | 2022-04-09T15:25:06Z | NONE | http://xarray.pydata.org/en/stable/groupby.html says:
but when I supply the TypeError: groupby() got an unexpected keyword argument 'level' ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1569/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
329438885 | MDU6SXNzdWUzMjk0Mzg4ODU= | 2215 | align() outer join returns DataArrays that are all NaNs | jjpr-mit 25231875 | closed | 0 | 10 | 2018-06-05T12:42:53Z | 2018-06-13T21:02:45Z | 2018-06-13T21:02:44Z | NONE | Code Sample, a copy-pastable example if possibleThe problem occurs for me in the midst of a data-processing pipeline that starts with some ~40MB netCDF files. I've tried to create pasteable code that reproduces the behavior from scratch, but I haven't succeeded. Problem descriptionI pass two DataArrays to The tuple of DataArrays returned by I've set breakpoints and delved into the code. On line 656 in Expected OutputA tuple of DataArrays which contain some non-NaN values. Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2215/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);