issues
1 row where state = "closed" and user = 16255489 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1674456910 | I_kwDOAMm_X85jzi9O | 7766 | groupby_bins incorrect correspondence with labels | gsieros 16255489 | closed | 0 | 1 | 2023-04-19T08:44:49Z | 2023-04-20T17:17:20Z | 2023-04-20T17:17:20Z | NONE | What happened?As of version 2023.4.0 groupby_bins stopped giving correct results. This was reported in #7751. The fix applied in 2023.4.1 changes the behaviour but does not fix the problem in my use case where strings are used as labels for the groups. It appears that the sorting that was implemented for the fix sorts based on name (so e.g. 'one' comes after 'four', see example) instead of on the lower edge. I could be wrong about the reason but accessing groups like data[group['label']] breaks What did you expect to happen?Until 2023.3.0 accessing groups by name gave the correct subset from the DataArray Minimal Complete Verifiable Example```Python import numpy as np import xarray as xr import pandas as pd import matplotlib.pyplot as plt import sys print(f"numpy version: {np.version}") print(f"xarray version: {xr.version}") print(f"pandas version: {pd.version}") print(f"python version: {sys.version}") Generate random dataMake the coordiantes follow a normal distributionnp.random.seed(42) coords = np.random.normal(5, 5, 1000) bins = np.logspace(-4, 1, 10) labels = ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine'] xArrayMake a mock dataarraydarr = xr.DataArray(coords, coords=[coords], dims=["coords"]) groups_xr = darr.groupby_bins("coords", bins, labels=labels).groups print(groups_xr.keys()) for lab in labels: print(lab, end=' ') try: print(int(darr[groups_xr[lab]].count())) except: print("nan") ``` MVCE confirmation
Relevant log outputNo response Anything else we need to know?Output from 2023.3.0 (keys in random order, but correct access by name) numpy version: 1.23.5 xarray version: 2023.3.0 pandas version: 1.5.3 python version: 3.10.6 (main, Mar 10 2023, 10:55:28) [GCC 11.3.0] dict_keys(['nine', 'eight', 'seven', 'five', 'six', 'four']) one nan two nan three nan four 1 five 2 six 9 seven 27 eight 153 nine 506 Output from 2023.4.1 - Keys alphabetically sorted, wrong access by name numpy version: 1.23.5 xarray version: 2023.4.1 pandas version: 1.5.3 python version: 3.10.6 (main, Mar 10 2023, 10:55:28) [GCC 11.3.0] dict_keys(['eight', 'five', 'four', 'nine', 'seven', 'six']) one nan two nan three nan four 9 five 2 six 506 seven 153 eight 1 nine 27 Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.6 (main, Mar 10 2023, 10:55:28) [GCC 11.3.0]
python-bits: 64
OS: Linux
OS-release: 5.19.0-40-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: en_US.UTF-8
LANG: el_GR.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.10.7
libnetcdf: 4.8.1
xarray: 2023.4.1
pandas: 1.5.3
numpy: 1.23.5
scipy: 1.10.2.dev0+2411.f2ee108
netCDF4: 1.5.8
pydap: None
h5netcdf: 1.1.0
h5py: 3.6.0
Nio: None
zarr: 2.14.2
cftime: 1.5.2
nc_time_axis: None
PseudoNetCDF: None
iris: None
bottleneck: 1.3.7
dask: 2023.4.0
distributed: 2023.4.0
matplotlib: 3.7.1
cartopy: 0.21.1
seaborn: 0.12.2
numbagg: None
fsspec: 2023.4.0
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 67.6.1
pip: 23.1
conda: None
pytest: 6.2.5
mypy: 0.942
IPython: 8.12.0
sphinx: 4.3.2
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7766/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);